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ABSTRACT

3D city modeling is a very demanding task. Itfetd from the same problems as genéattam-up 3D acquisition
processesWhatever the 3D acquisition system, thare always objects and surfaces that yield meager performance.
Often the problems are fundamental and cannot be resolved through more sophisticatedipgitonessing. If
however, one knows what kind of objecte & be modeled e.g. buildings strong prior knowledge can be invoked.
Inverse procedural modeling is a case in pdintields more compact and more realistic models, yet requires a
grammar to be created and then activated for the style at hangapbediscusses style classification and the (initial)

use of more generic architectural guidelines as ways to mitigate the problems with procedural grammars.

1. INTRODUCTION

3D data acquisition, including that for city modeling, has traditignbeen handled in a very
bottomup fashion. One of the noteworthy developments has been the increasing success-of image
based mobile mapping. Increasingly, platforms only equipped with cameras and a GPS receiver
extra 3D data comparable in quality tocathobtained with more heavily equipped platforms,
carrying e.g. a laser scanner, and INS unit, several cameras, and GPS. Sudbasedgeapture is

a commercial fact by now.

Yet, a new wave of innovations can be expected to arrive soon, again dritrendameras on the
mobile mapping platforms. Indeed, over the last decade or so, the computer vision community has
developed methods to detect instances of object classes in images, e.g. to find all the people, trees,
cars, etc. in images. This is usefdr se also for city modeling, as cities obviously do not only
contain buildings but also such objects. Yet, at least as important is the role the object detection can
be expected to have on the 3D acquisition process itself. This process still has tfalisy pi
whatever capturing technology is used. As an example, Haged 3D capture finds it difficult to
handle untextured or specular surfaces, thin objects like poles or fragmented volumes like tree
canopies. Yet, strong priors can be used as sooneaknows what it is that one is trying to model.

In this paperwe give a short overview of ogemantic modeling work for buildings. In particular,

we describe our inverse procedural approach.

Procedural modeling describes buildings through theamtisttions of a series of rules. Together
these rules form a grammar. Typically such grammar starts from the overall structure of a building,
to then add more and more detail to its geometry as one applies rule aft®uiatemay e.g. add
windows to wadk, or ledges along a flooA grammar is designed for a specific style and its
creation require quite some expertise about tisgle. Grammar creation therefore may be non
trivial. As such, a procedural modeling approach to architecture is a gréijleiggocess, where a

user wants to create a building model. City modeling requires the opposite: starting from (in our
case images of) the existing reality, one wants to create procedural models of strudiures\éle

refer to such process as/erse pocedural modelingWhen producing a procedural modeling of a
building through inverse procedural modeling, one needs to select the appropriate rule to apply, and
also their parameters. The search spdidbis optimization problertends to be quite large.

Grammars being netrivial to createand then the optimization for inverse procedural modeling
being involved why would one want to produce procedural modetihuildings in the first place?

For one, procedural models are very compact, yet can béedetBius, detailed models would still



fit in reasonably sized memorAs a matter of fact, one can infer aspects that allow for a more
realistic rendering than would be possible from pure 3D capturing. For instance, windows can be
made reflective and tael a bit deeper than the facade, even if such sealh difference wuld be

difficult to infer from the 3D dataMoreover, procedural models arelriin terms of semantics.
Semantic concepts like windows, floors, doors, balconies, etc. are made eRpticiédural city

models can therefore be explored at a high semantic level. One could ask how many buildings have
at least 10 floors, what the total window area in a city district is, etc. In the case of animation, the
model is prepared to let virtual pdeponly walk via doors, rather than through walls, and to
automatically determine the flux in or out of a building based on its size.

The structure of the remainder of the paper is as follows. First, we give a shoiewvef the

related literature (®tion 2). Section 3 discusses inverse procedural modeling in a bit more detall,
for the case of classical temples. Section 4 then concisely describes how appropriate style grammars
can be identified automatically, through the visual recognition of the sfya building. Section 5
continues with showing thdt for most buildingsi one could actually work from rather style
independent architectural principlebnhis is exemplified for the case of facade parsing. Section 6
concludes the paper.

2. RELATED WORK

Urban reconstruction. For a more extensive overview of the city modeliwg refer the reader to

the survey of (Musialski et al., 2012)e restrict our discussion to the contributions that are closest

to the approach in our paper, e.g. to approachésismfocus omground imageryFirst, we want to
mention several of the papers that focus on preprocessing steps that should also be applied before
some or our techniques could kick Zhao et al., 2010) presext an algorithm that segments
ground images into buildings, grass and sky, followed by the partitioning of buildings into
individual facadesIn this paper, we do not consider such segmentation and assume it has been
carried out beforehand (mainly for Section Bhe facade splitting problem watsa studied by
(Wendel et al.,2010; Recky et al., 2011), who explogpetitive patterngo get cuesfor the
transitions between the facades of different buildings. In previous work (Mathias et al., 2011a), we
developed ascene classification stefhat identifies input images containing facades. After
automated image rectification, buildings are split into individual facades.

As to the modeling of the actual building¥Xiao et al., 2008; Xiao et al., 2009) target realistic
visualization with a low levebf semantic encoding in the reconstruction. In their work, facades are
represented with planes or simple developable surfaces. Orh#itehaind, several approaches use
higherorder knowledge for building reconstruction. Probabilistic apgres find theiorigin inthe
seminalwork of (Dick et al., 2004), where aiitding is treated as a combinatioh parameterized
primitives. An expert is needed to set the model parameters and prior probabilities, while inference
is performed using a Markov Chain Mor@@arlo (MCMC) approachAnother early grammabased
approach that fitted stochastic grammars with MCMC was (Alegre and Dellaert, 2004), while a bit
later (Ripperda and Brenner, 2006) used rjlMCMC for the construction of a grammar tree.
Assumptions about thexistence of afacade grid structure eve employedin (Korah and
Rasmussen, 2008; Yang and Férstner, 2011; Han et al., 2012). Multiple grids are estimated in the
work of (Shen et al., 2011).
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(Inverse) procedural modeling.In the introduction we have alegly pointed out that we use
assumptions about building and facade structures in the form of a style grammar. We also
introduced the concept ofiverse procedural modeling (IPM) as an umbrella termafguroaches

that attempt to discover thaules and thie parameter values of the procedural medd existing
buildings Most IPM methods haveonfined theframework to cases whethe style grammar is

known in advancdi.e. the set of relevant rules is considered givai)e relevantrules ad
parameters ar¢hen still to be selectedrhis bp-down model isthen fitted to bottorup cues
derived from the data he first such method is probabMyeller et al., 200y The authorassume

a certain degree of facade regularity and fit procedural grammar rulesdetticted subdivision of

the facade. The approach was extended in (Van Gool et al.,, 2008), where images with strong
perspective distortions are used to infer vanishing points and 3D information from a single image.
(Han and Zhu, 2009) propounded a hylsmttomup/topdown approach(Vanegas et al., 2010)

used a simple grammar for buildings théllow the Manhattan wrld assumption. A grammar was

fitted from laserscan data in (Toshev et al., 2010). (Mathias et al., 2011b) reconstructed Greek
Doric tenples using template proceduralbdels.We concisely summarize this approach in Section

2. (Teboul et al., 2011) presented an efficient parsing scheme for Haussmannian shape grammars
using Reinforcement Learning. Recently, (Riemenschneider et al., 2012) guoB¥¥K parsing.
Although these appaches produce goddcade parsirg) they assume 1stng priors

As already indicatedall thesegrammarbasedmethodsshare acommon drawback. They assume
that a nanually designedgrammar is available from the outsehi§ is a serious constraint, as it
limits the reconstruction techniques to a handful of building styles for whictviitten grammars
exist. Creating stylkspecific grammars is a tedious and tiomsuming process, whichan
typically only be achieved tbhugh collaboration between architectural experts in combination with
people verse in the writing of the rules for the grammar type of chéleewill come back to this
limitation later, especially in Section Moreover, if a stylespecific grammar is toebof any use in

the context of automated, largeale city modeling, then the style of the buildings need to be
recognized swiftly, as to activate the relevant style. In the next section, we discuss tbéthte

art in architectural style classificatio

Architectural style classification. As matter of fact, so farery little research has been carried out
in the field of automatedarchitectural style identification. (Romer andufer, 2010) aims at
detecting buildings of th&Vilhelminian style from asimplified 3D city model. Their approach is
based on #ew coarse features (buildjrfootprint and height) and exploits no image suppiduts
would only work in a city where buildings of that epoch are all of the Wilhelminian style.

It stands to reasothat better classification can be achieved if further image information is used.
Available image classification siggns such as the one of (Bosehal., 2008) often distinguish
between images whose appearanaesvery differentFor instance, much attgéon has beempaid to
distinguishing indoofrom outdoa scenes (Payne and Singh, 2082ummer and Picard, 2002).
Conversely, fagde pictures share many commfgatures no matter their styles. For instance,
colour or edgesvould seem to be overly weak suevhen wanting to distinguish Haussmannian
from Neoclassical buildings. The system of (Mathias et al., 2011a) wa8Brshdo tackle the
problem ofimagebased architectural style identification. Their approach proddgstematic and
comprehensive wagf estimating the building style from a single strelele image, incorporating
steps ofscene classificatiofwhere are the facades®hage rectificatin, facade splitting and style
classification.



3. INVERSE PROCEDURAL MODELING WITH FIXED GRAMMARS

This setion describes an approach that is explained in more det@athias et al., 2011b)hat

paper discusses the 3D modeling of classical Doric temples. We will use this as an example case for
inverse procedural modelingyve have developed a gramar for seh buildings and the IPM
pipeline described herenows this to be the gramar that has to be used in advanC&ssical
temples, like the more recent Hausmannian architecture, conform to strict architectural rules as
described in (Summerson, 1996). Thades have been converted into the shape grammar.

Our IPM pipeline create8D building modelsi i.c. of classical temples by combiningimage

based Structurfom-Motion (SfM), buildi ng el emen't (6basset 6) det e
pillars and capdls in our application exampleand irverse procedural modeling. The latter
component incorporates a shag@ammar interpreter thatrives the process. The usage of asset
detectors replacdsagile segmentation procesdag top-down, semantic influence$his has only
become possible by leveraging recpragress invisual object class recognitiofhe detectors are
trained from single images, where a user has to draw bounding boxes around exemplars of the
intended class. This is a rather tedious procedstas therefore good if part of such training can be
automated. More about this is to follow sotins also important to note that omnages which

\1. Symbol list ( \
P ’ . 3. Images
Grammar 2 2. Matching Symb°'5| Vision ' Asset

Interpreter l?.StructuraI information . Module 4 Detections Detectors
' 8. Estimated attributes\ —

5. Images

| 6. 3D point cloud

3D Reconstruction
Module

Figure 1:Reconstruction of Doric temples combining SfM, column aagital detectors, and
appropriate classical temple grammar
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have been mined from the Internetten do not allow for a compleSfM reconstructionin such
case, the strong shape priors from the grammar combined with the asset detections obtained from
single images, are a necessary addition to the SfM approach.

The approach combirgethe robustness of a tolown grammarbased approach with the flexiiy

of the bottoraup SfM imagebased approaciihe extra building asset detectors actrad-level
catalyzersthat help speed up the interaction between botiprand topdown processing. They can
be regarded a tegown process from an -between, semantievel. By proposing such pipeline,
our main contributions have been the following. (heTreconstruction process is guideyl the
grammar.Instead of the developersviiag stylespecific guidelinesn mind when producing the
system, a grammar interpretiol renders the process more genefibus, the pipeline uses a
specific grammar, but can be used in combination with another one just the same. No style
knowledge is baked into the pipeline itsdifis the grammathat decides on what to do when.
Moreover, structurethat may not even be vis#kan be filled in. (2) Rathéhnan relying on fragile
segmetation processes to kieitartthe semantic analysis,glgrammar uses tlavailable detectors

to asgyn initial semantic labels tonage regions. (3Yhe systen learns from its previous results.
Asset @tectors selfmprove by usingnodelingresults as additioharaining material. If the entire
modeling sequence has been successfullyedlothis is a strong indicatiothat the surviving
detectors areorrect. This alsallows us to start with rathgeneric asset detectors, whitéive not
been developed uniquely for the targeted stiglé can then be specialized towards ssgecific
detectors This is very useful, as this avoids having to train clets for each style separately,
which would a very tim&onsuming process given the need for manual annotations (bounding
boxes around the exemplars).

As a resultnot only is the 3D modelingelped by the detectors, but the training of detectors is also
helped by the 3D modeling.

Figure 1 shows how the partd the system interact. Firgt), the grammar interpretenitializes the
vision modulewith a list of shape symb®lautomatically extracted frotme grammar. They are
then compared with the lisff symbols that representined asset detectors from alatabase. The
matching synbols (assets) are identifiegported to the grammar arpreter (2) and the detection
process is initiatied for those assets resultingdetection bounding boxes il amput images (34).
The image are alsofed into the 3D reconstructiomodule ARC3D (Vergauwen and Van Gool,
2006) toobtain a sparse 3D point cloadd the camera parametdrom the building (%). Forthe
matched symbols (detectable assets) the grammtexpreter parsethe grammar to find structural
informationlike spatial configuration rorepetitions of these symbo{step 7).The vison module
uses a plane fittinglgorithm to extract the awinant planes of the buildinghe detections from all
images are projected into 3D ameweighted based on cagrissus in 3D and the structural
information. The output of th vision module are the sizetthe detected assets and theslor, the
footprint for thebuilding and the parameters for the stural configurations (step 8)Then the
building can be instantiated by tgeammar interpreter by using the extracted parameters.

We show theresulting reconstructions of three Grelgkric templesin Figure 2: the Temple of
Athena (also known as Temple of C&rghe Temple ofPoseidonwhere the latter two areoth
archaic Dorictemples in the ancient city of Paestuamd the Parthenon in Nashville, a fstlale
replica of he original Parthenon in Athen$he figureshows originalimages and final the 3D
temgde modelssuperimposedNote how in the formetwo cases the grammar is strong enough a
driving force to allow for the completion of these ruined temples.



Figure 2 Reconstruction of Greek Doric temples (Mathias et al. 2011). Left: Temple of Athena, Paestum, Italy
Temple of Poseidon, Paestum, Italy. Right: Parthenon replica, Nastu8A

4. ARCHITECTURAL STYLE RECOGNITION

In the previous sectigiwe still had to assume that the syst®ould know about the relevant style
grammar before the modeling pipeline would stahnis is OK for individual landmarks, but when a
mobile mapping system is driven through a city, many buildings are observed and the style often
changes between them, eweithin a single street. It would therefore be good if such mobile system
would be capable of automatically recognizing the style of buildings, such that it can in each case
activate the appropriate grammar.

In (Mathias et al. 2011a) we propdsa 4stage method forthe automated classification of
architecturalbuilding styles. We demonstrate thigpproach on three distinct architectural styles:
Flemish Renaissance, Haussmannian,dedclassicalWe al s o consi dPReobablp c | a
to the dismay bthe experts, weise a loose interpretation of feearchitectural terms, as our main

goal is to enable automated 3D modeling pipelines to get sufficient prior information to succeed.
Hence we actually focumn the categorization of bdihg appearance, oh actual historic
provenance. For example, outefish Renaissance dataset atmmtains buildings from the
Flemish Renaissance Revival style, which share thisiral features.

Last but not least, &havealso created a publicly available dataset chffe images spanning the
aforementioned threstyles The images weraken fromexample building# the cities of Leuven,
Antwerp and Brussels, in Belgiurfhis database will allowther researchers to test and compare
their approaches on the same images

As a matter of fact, if mobile mapping is to be automated, other preprocessing steps need to be
automated as well. For instance, the system should know where there are buildings (and e.g. not
vegetation) and it needs to identify single facades, wiieh are to be rectified. We have worked

on the automation of these steps as well.
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Figure 3 A system for architectural style recognition (Mathias et al. 2011a)

Figure 3 gives an overview obur preprocessing system. The first sigtermins if the image
actually contains building facadesyd where If this condition is met,the facade portions are
rectified asthe images of buildings takdnom the street usually contain sifoant projective

distortions.After the image has been rectdiewe still face the problem of segmenting individual
facades out of the typicédng, unboken building blocksThis is important as the architectural style

may vary from facade to facadéle use edgénformation to find individual building separators.
For more details on facade segmentation we refer to the original paper.

As to the determirtaon where the buildings are, we actually distinguitween the four most
common caseim street-side imagery:

A No

b u imhges notgcstaining any buildings. Typicaéxamples in urban scenarios are
parks, gardens and waterfronts.

A S t- imagegcontaining faades captured at a large angle frdma facade planes, occurring
when the camera orientation coincides withe street directionforward looking cameras on the

mobile mapping van)

A F a eimabessontaining one or more whole facadgsically found in theobliquely forward
looking cameras).
ABuilding part- images containing only a small part of a facade, not enough for a complete
reconstructior{often the case for the sideways looking cameras)

We usel a similar approach to (Torralbat al., 2003). The extracted features correspond to
steerable pyraid of Gabor filters, tuned td scales and 8 orientations. Hilteutputs are then

averaged over adx4 grid. This produces a dare vector of 51Xeatures. Classification is

performedusing a Support Vector Machine (SVM) with a Gaussiamatdaasis kernel function.

The SVM is trained using a oneersusall approach.

Buildings || None | Part | Street | Facades |

None 100 0 0 0
Part 2.8 85.6 2.4 9.2
Street 0.8 1.2 08 0
Facades 0 7.2 0.4 92.4

Tablel: Resultsn scene classification

From this result tablegne can see that most
classes are well distinguished from others
Misclassification mostly occus between
0Buil di ng par acouldnbd
expected given their high visual similarity.

0F

-
C
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Neighbor (NBNN) classifier proposed by (Boiman et al., 2008). Despite its simplicity, it has many
advantages. This ngmarametric classifier does not need tioemsuming offline leaning and, by
design, it can handle many differenagtes.This means that new styles can easily be added.
Furthermore it avoids @-fitting, which is a serioussue for learningpased approaches.

We crossvalidated our style dector, using both SIFT (Lowe, 200d4hd SSIM (Shechtman and
Irani, 2007) fedure descriptors. Oudataset contains 949 images: 318 background facades (i.e.
facades belonging to none of theaibed styles), 286 images fdXeoclassical, 180 for
Haussmanian and 165 for Flemish Renaissance. We have taken theggsourselves, exddpr

theHaussmannian style images that come from (Teboul, 2010).

| Style || Haussman | Neoclassical | Renaissance | Unknown
Haussman 0.98 0 0 0.02
Neoclassical 0.02 0.76 0 0.22
Renaissance 0 0 0.59 0.41
Unknown 0.03 0.005 0.005 0.96

Table2: Resultdn style classification

Table 2 shows the confusion matrifter crossvalidation for thecase withSIFT descriptas. This

feature choice yielded the best performaticeughout our experiments. While the Hsemgniman

style is clearly separateddom other classes, many buitdj of the FlemishRenaissance type are

Rve lbabeathe llegtst number pfamages d u e
for the FlemishRenaissance style, oimplicitly derived definition for that particular class is still

quite imprecise, where tigreatbut sparsely samplativersity of the facades of that classuld not

steer the classification process sufficiently wal said, SIFT features outperformed SSIM features

in our case:lte mean detection rate of the SIFT ftwas was 84% while for the salimilarity
descriptor (SSIM) it reached only 78%.

cl assi fi

ed as

oUnknowni.

Figure 4shows the regions of th8IFT interest points colored idifferent colors. The colors
indicate to which styléhe given feature had the minimum distariiee colors associated with the
appropriatestyles clearly dominate the imes. The features that respond correctlyttier styleat

handare mostly attached to architectural elements that are typical for yl@tesy. the features

respondingo the capitals in a neoclassical building.

A current limitation is that the system focuses on facades on dominantly planar structures
where 2D image features are the most obvious candidadesnore complicated Bdings such as

landnarks( publ i ¢

buil di ngs, itstahds to cehserstg expandshe featse, set é )

towards 3D shape features as we&lhich thencan alsocapture volumetric aspec{put would
probably still benefit from fagade image featgres
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Figure 4:Detected, stylspecific fatures. RedNeo-classical, blue: Hausmannigmyrple: Flemish Renaissanageen:
other. The figure shows the confusion for the Flemish Renaissance building third from the left.

5.USING WEAK ARCHITECT URAL PRINCIPLES IN T HE ABSENCE OF STYLE
INFORMATION

Even if the style of a building can be recovered, the production of manysgitefic grammars
remains noftrivial. Thus there araecent attempts to byass the initial neetbr such grammars
and to start with weaker intuitive or learnt prigkéartinovic et al., 2012Dai et al., 2012)Here we
discuss automated facade parsing, the subdivision ofacades into their main components
(windows, door s, ithdutmeedirg a striorg granomarifrensthe stéar). w

Our proposed facade parsing metl{dtartinovic et al., 2012fonsists of three disict layers. In

the first a supervised training method learns the facade labeling based on an initial over
segmentation. ¢ this purpose we utilize the recently developed Recursive Neural Networks
(RNN) (Socher et al. 2011). Inehmiddle layer we introducknowledge about distinct facade
elements, such as doors and windowmsihe third and top layerhé raw RNN atput isthen
combined withinformation coming from object detectors trained to deteathatectural elements
Figure5 gives a schematoverview of the system (froieft to right rather than bottom to top)

We pose the merging of RNN and detector owjst a jxel labeling problem, modeled as a 2D
Markov Random Field over the pise The multilabel MRF issolved using graph cuts. Finally, the
top layer introdoes the weak architectural concepts. These guidelinesthat encourage
regularities like horizontabr vertical alignments of windows. An important advantadeour
guidelines ovegrammar rules is that the former alieectly observable in the imageghereas the
latter keepsome concepgtimplicit. Thus, even if the combined application of a numberagade
rules may necessarily lead to, say, the vertical alighmewindows across floorghere could be
no single rule explicitly prescribinguch alignment. An issue with style grammars can therére
the very indirect coupling between what they sfyeaind what could easily be verified in the
images.Our approach also enabld®e modeling of irregular facadeas we use the architectural
concepts as guidelines, not as hard constraints.
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Figure5: A threelayered approach to facade parsing (Martinovic et al. 2012)
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Next, we describe the layers of this process thaksvarthout a stylespecific grammar, in more
detail.

For the first layerwe follow the approach of (Gould et al., 2009a), with some modifications. First,
the input image is ovesegmentedThe segmented regions are created by use ofmtaashift
segmatation algorithm of (Comaniciu arideer, 2002). We prefea fine-grained segmentaticso

as not to combine different facade elements @nsingle region. On average, we obtain 643 regions
per image (average image sis 600*400 pixels). Nexgppearancécolor and texture), geometry,
and location features are extracted for each region using the procedurailaf éGal., 2009a). We
use thedefault parameters from the implementatiorthe STAIR Vision Library (Gould et al.,
2009b), which results in faate vectors of size 229 he trained RNN also builds a parse tree for
this image, assigning a score to eaelgment mergeand a multinomial label distribution to each
region. Wethen read out the probaitigs in the leaves of the tree and assmthe egionsthe most
likely label. Every region is thus assignede of the predefineldbels, e.g. wmdow, wall, balcony,
door, roof, sky, shop.

At the middle layer, the results of object detectors are introddi¢tedRNN requires preegmented
images as indy but the results of the bottom layer are still quite no@lyject detectors (e.g. of
door s, wi ndows, b labelmg inforreasion froén. a)secend sourced s® we can
estimate better boundaries foetectedelements We use our owrsPU-based rinplementation of
Dollar's Integral Channel aéures detectoiDollar et al. 2009, Benenson et al., 20IR)is detector
provides stat®f-the-art results for pedestrian detection and proved to be equally suited for the task
of window and door detection @é&igure6).
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Figure 8 Performance of the window detector

To merge the information coming frothe lowerand the middle levedf the pipeline (i.e. mean

shift and detectebased segmentationsye formulate a labeling problem by placing a 2D Markov
Rardom Field over the image pixels. We seek to minimize the total energy, defined as the sum of
unary potentials for each node, and the sum of all pairwise potentials between neighboring pixels:

Zd’ Vi | x;) +AZ Z (Vi ¥y | T, x5)

T ETjr~ Ty

where x is an image plxel, while the relation ~ represents 4f@xel neighborhood. Herey
corresponds to the smoothing parameter, as the pairwise potentials follow the Potts model. The
unary potential of a pixel is a weighted sum of the-lewel information (RNN labeling) and
detector potentials.

Both the outptiof the initial oversegmentation and the boundaries of the detectors are imprecise.
From these two sources alone one cannot expect the MRF to derive a clean semantic segmentation
yet. Yet, n these two firstlayers we have not used any informatidmoat the facade structure. The

results up to that point may already @@nvincing quantitativelybut suffer fromvisually salient

errors such as missing or misplaced facatementsTo combat this probim, we exploitweak
architectural principlessummarizedn Table 3.

Principle Alter|Add|Remove| ECP|eTrims
(Non-)alignment: vertical and horizontal X - - X x
Similarity of different windows of the same facade - X - X X
Facade symmetry - X X X X
Co-occurence of elements - x X X -
Equal width/height in a row or column X - - X -
Door hypothesis: first floor, touching ground x | x X X -
Vertical region order: {shop”*, facade™, roof*, sky*}| x | - - x -
Running balcony in the 2nd and 5th floor b x X X -

Table2: Weak architectural principles used to complenteefirst 2 layers. An 'x' in the "alter' column
denotes that the principle adjusts element borders. The principle may also remove or add new elen
two columns indicate which principles are usedeach of the two datasets used in the experiments.
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The principles listed above are used to encode-leigdl architectural knowledge, and they can be
directly evaluated in facade images. Mast them can be applied othe majority offacades
irrespective of their styleswhile othes are less generally applicable any case, the weak
architectural principles are weak enough to cover several styles instead of beirgpatyfie.
Furthermore, we uskthe grounetruth labeling of the validation sefor the benchmarks on which
we testedto automatically deduce which principles should hold.

Figure 7: The (nofalignment principle Figure 8: Similarity principle: Left: windows marked with red rectan
states that facade elements should are thenitially discovered windows. Right: the similarity voting spe
either aligned or clearly offenter. contains strong peaks on previously undetected windows

. window D wall . balcony . door - roof D sky - shop

Figure 9: Some modeling results on the ECP dataset. Left: original image. Middle: semz
segmented facade. Right: proceduralding model
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i) (b) (@

. building D car . door . pavement . road |:| sky . vegetation . window

Figure 10: Results on the eTrims dataset. (a) Original imag#. Qutputs from bottom, middle a
top layer. (e) Ground truth

Figures 7 and 8 illustratevo of theweakarchitectural guidelines. Figuishows how the system
prefers aligned or sufficiently valigned configuratins (in this case vertical alignmesftwindows
across floors). Figur8 shows how the system looks for the similarity among detected elements
(here windows). Similarity detection helps to suggest the presence of other elements, which went
unnoticed by th detector. The system thus infers the presence of additional elements.

Figure 9 shows results for Hausmannian style buildings. The input images are shown on the left.
The middle column shows the facade parsing results for-lge8 system. The righbtumn shows
reconstructions. These are cleaner than what pure 3D points clouds would support. Although the
rendering was not done very carefully (thereby staying below pleatesm quite a bit still), there

are 3D details like deeper lying windows thatuadly come from the semantics and not from any

3D capturing process. As a matter of fact, in this case the input only consisted of the single images
on the left.

Figure10 shows results for the eTrims dataset. This dataset contains mixed styles adivgtse

sizes of buildings (in contrast to the Hausmann dataBet) system was tested on this benchmark
with the same parameters as used for the Hausmann benchmdnis benchmark, additional
object types appear (cars, vegetation, etc.). As thétseshow, the 3ayer system again produces
reasonable results. In this system, all 3 layers perform an important role and yield improvements
beyond what lower layers can achieve.

Ongoing work replaces the rather intricate RNN component by a simpléastied alternative. This
and other modifications have already produces a similar but superior system than the one described
here.






