
Real-time Detection and Recognition of Traffic Signs

A. Martinović, G. Glavaš, M. Juribašić, D. Sutić and Z. Kalafatić
Faculty of Electrical Engineering and Computing

Unska 3, 10000 Zagreb
E-mail: {andelo.martinovic, goran.glavas, matko.juribasic, davor.sutic, zoran.kalafatic}@fer.hr

Abstract - Automated recognition of traffic signs is
becoming a very interesting area in computer vision
with clear possibilities of its application in automotive
industry. For example, it would be possible to design a
system which could recognize the current speed limit
on the road and notify the driver in an appropriate
manner. In this paper we deal with methods for
automated localization of certain traffic signs, and
classification of those signs according to the official
designations. We propose two different approaches of
determining the current speed limit after the sign was
localized. A demo software system was developed to
demonstrate the presented methods. Finally, we
compare results obtained from the developed software,
and discuss the influence of different parameters on
recognition performance and quality.

I. INTRODUCTION

Traffic sign detection and recognition has found its
application in many driver assistance systems, which aim
to display helpful information to the driver using
knowledge about the current conditions on the road. A
complete system should have three distinct functions:

1. detection of a traffic sign in an image;
2. classification of the detected sign;
3. sign tracking through time.

A complete traffic sign detection and recognition system

should be able to recognize all of the traffic signs used in
Croatia. Croatian regulations define five sign classes:
warning signs, explicit order signs, information signs,
direction signs and supplemental panels [10]. Due to the
limited annotated image database of traffic signs, we
focused our efforts on detecting and classifying only a
subset of explicit order signs. After a detailed analysis of
image and video databases at our disposal, we determined
that the five most common traffic signs in this category are
those shown in Fig. 1.

Fig. 1. Five common signs in category of explicit order traffic
signs

Since all of the signs from Fig. 1. are similar in
appearance (red circles containing black or red symbols),
our detection algorithm is trained to detect only circular
traffic signs, while an additional classification stage is
needed to separate these signs from each other.

Additionally, there is one traffic sign of specific
importance: the speed limit sign (rightmost on Fig. 1). The
system should also be able to determine the exact speed
limit, if the corresponding sign is classified as such.

This work is organized as follows. In Section 2 we
mention different approaches by various researchers. In
Section 3 we briefly describe an algorithm used to detect
sign in an image. In Section 4 we present two algorithms
used to recognize the detected sign. Section 5 contains
details about how to combine results from individual
frames to achieve detection and tracking in a video.
Results are illustrated and discussed in Section 6. We
conclude this article in Section 7.

II. RELATED WORK

The approaches to sign detection vary in use of color and

geometric information. Various color-based approaches
use RGB or other color models (i.e. HSV, L*a*b,
CIECAM97, etc.). Intensity decoupling color schemes
[1,5] are preferred because of diverse lightning conditions
usually encountered in real life applications. Some authors
use simple thresholding [1,2], while other use clustering
methods [3] or recursive region splitting [4,5,6].

Geometric information can be extracted with Hough
transform [6,7,15], histogram of orientation vectors [5,13]
or template matching [16]. Standard classifiers like SVM
can be used with these geometric features [13]. A large
body of work is based on the Viola-Jones detector
proposed in [8]. This approach has been used in
[9,10,11,12]. Most Viola-Jones based implementations
extract shape information in grayscale images, while [9]
uses color based Haar features. Neural networks are used
for detection in [14].

Unlike some of the related work, which considers static
images [5,6,7], our system works on video sequences in
real time (over 20 fps) on a mainstream CPU (~2GHz).

III. SIGN DETECTION

Detecting an object in an image is a computer vision
problem for which a wide variety of algorithms exist.
Because we wanted our system to work in real-time, we
have decided to employ the Viola-Jones detection
algorithm.

A. Viola-Jones algorithm in traffic signs detection

The Viola-Jones detector works by sliding a detection
window across an image. At each position, the classifier
makes the decision if there is a desired object inside the
window. In the vast majority of window’s positions, the
object is not found. The number of classifications for an
image is equal to the number of windows positions, which
can be in the order of 105 or 106. This is why the
classification itself has to be as fast as possible.

Viola-Jones algorithm is based on a cascade of boosted
Haar’s features. More on the Haar’s features can be found
in the original paper [8]. Boosting is done through
AdaBoost, a machine learning algorithm which combines
weak classifiers built on Haar’s features into a strong
classifier. Given enough different weak classifiers,
AdaBoost will produce a strong classifier with arbitrary
precision. A theoretic proof and a good introduction to
boosting can be found in a tutorial from AdaBoost’s
creators, Freund and Schapire [17]. The decision of
whether the object is detected is made through voting of
weak classifiers, each according to its weights. Cascading
classifiers speeds up this process significantly, because
more important weak classifiers get to vote first: if their
decision is negative, the image is rejected and other less
important classifiers do not vote at all. Object is classified
positively only if it successfully passes through the
cascade, positively classified in each stage. Final classifier
works in real time because:

• Haar’s features take constant time to calculate
from integral image;

• in a classifier produced by AdaBoost, voting is
done as a summation of weighted classifiers;

• on average, only a small subset of classifiers votes
every time because of the cascading.

An analysis of the variants in the training process can be
found in a paper by Lienhart, Kuranov and Pisarevsky
[18].

B. Viola-Jones training

To train the classifier, we used 757 images of traffic
signs. Each positive image contained only a cropped traffic
sign normalized to the size of 24x24. 3000 images were
used as negatives. We trained the cascade with OpenCV,
which is an open source library of computer vision
functions. We used it with the following parameters:

• Minimum hit rate of 0.995 per stage. Only one in

200 positive images is falsely rejected in every
stage, the others are positively classified.

• Maximum false positives of 0.4 per stage. This
allows that up to 40% of the images positively
classified are false positives.

• Number of stages was set to 20.

 With these parameters the theoretic hit rate is expected
to be more than 0.99520 ≈ 0,9 with outmost 0.420 ≈ 10-8
false positives.

Training of Viola-Jones detector took approximately 16
hours on a 4 CPU computer, with OpenMP enabled. The
training procedure stopped after reaching the desired
number of stages.

The trained cascade was afterwards tested with a test set
of 286 images. Images from the test set were taken with a
different camera and under various lightning conditions.
Results are shown in Table 1. The number of false
positives is expressed related to the number of signs in the
test set.

TABLE I

Experimental results for trained Viola-Jones detector

Scale
factor

Hits Misses False
positives

1.3 61.53% 38.46% 11.88%
1.2 67.13% 32.86% 18.88%
1.1 75.17% 24.83% 28.67%

Viola-Jones detector works by sliding a detection
window across an image, and enlarging that window by a
scale factor after the end of the image is found. Therefore,
modifying the scale factor affects the detection quality and
speed. By reducing its size, we increase the possibility a
sign will be detected, but we also increase the time needed
for the algorithm to finish. In our work we used the scale
factor of 1.1 because it provided the best hit ratio with an
acceptable frame rate (over 20 fps). False positives are
expected to be removed by later stages of sign recognition.

Further analysis of the results revealed that most
unsuccessful detections are caused by signs which are
smaller than the samples used to train the cascade (24x24
pixels). This behavior is not unexpected; its impact
diminishes when the algorithm is used on a video sequence
because traffic signs grow in virtual size as the sequence
progresses. In a certain moment, it will become large
enough to be detected.

IV. SIGN RECOGNITION

After a sign was successfully detected in an image, the
classification process begins, as to determine the type of
the sign. The classifier expects an adequate input vector,
which must firstly be prepared by means of image
preprocessing.

A. Sign preprocessing

The resulting sign from the detection stage can have
arbitrary size. In order to correctly classify the sign, a size
normalization is required. In our work, we used a standard
sign size of 10x10 pixels. Image resizing procedure is
implemented using bilinear interpolation algorithm. A
clipping operation is also required, in such a manner that
only the central part of the sign remains, which holds
useful information. Fig. 2 shows results from two different
interpolation algorithms.

Fig. 2. (a) nearest neighbor interpolation, (b) bilinear filtering

After size normalization, color information is discarded.
Conversion from 24-bit RGB space to grayscale image is
conducted by ITU CCR 601 standard. The resulting
grayscale image has to be transformed into a binary image
(image with pixel intensities 0 and 1) using a thresholding
algorithm. All pixels with intensities over a defined
threshold are assigned with value 1, and the remaining
pixels become 0. An iterative threshold selection method
[22] is used. This method produces very good results when
used on images where objects of interest are evenly
illuminated (which is the case with most traffic signs). In
the case of non-uniform illumination, it is advisable to use
one of the adaptive thresholding methods [23].

As a result of the segmentation procedure we get a
binary image with dimensions of 10*10 pixels. Input
vector for the classifier is formed by taking the binary
image as a one-dimensional vector with 100 elements, with
one slight modification. This modification replaces values
of 0 with values of -1, to improve the neural network
performance by distributing values equally around zero.

B. Classification using neural networks

There are many types of neural networks (e.g. feed-
forward networks, radial-basis networks, recursive
networks) and possible applications for them (e.g. pattern
recognition, function interpolation). It has been shown that
multilayer perceptron networks with a single hidden layer
and a nonlinear activation function are universal classifiers
[19, 20]. Therefore, in our work we have chosen a
multilayer perceptron (MLP) with back propagation (BP)
training for classification.

For the purposes of this project we have developed our
own software library for MLP trained according to BP
algorithm. The library provides support for creating and
training arbitrary MLP (arbitrary number of hidden layers
with arbitrary number of units in each layer) with the
sigmoidal activation function. Using the capabilities of the
developed MLP library we have created and trained two
different multilayer perceptrons.

- The purpose of the first network was to classify a
given traffic sign (input vector) into one of five
categories (as shown in Fig. 1).

- The task of the second MLP was to recognize the
actual speed limit if the first network classified the
input vector into speed limit category. Hence, the
second network was trained to recognize decimal
digits (0-9).

In the case of MLP there are always several network
parameters left to be determined experimentally (the
number of units in hidden layers, learning factor for weight

correction, etc.) [21]. To determine the optimal parameters,
we trained the MLP observing the performance on the
validation set to avoid overfitting.

Table II shows optimal parameters for both multilayer
perceptrons (the values for number of units in hidden
layer, learning factor for weight correction, maximal
number of epochs and satisfactory average epoch error
were obtained empirically).

TABLE II

Neuron numbers per layer

 Input layer Hidden layer Output
layer

General
MLP

100 (10x10
pixels) 10 5

Speed limit
MLP

72
(6x12

pixels)
10 10

TABLE III
Weight correction learning factors, maximum number of

epochs and average errors

Learning
factor (ŋ)

Maximum
number of

epochs

Satisfactory
average epoch

error
General

MLP
0.1

initially,
0.05 when

error drops
below 0.1

10 000

0.01

Speed limit
MLP

0.01
initially,
0.005 when

error drops
below 0.1

50 000

0.001

Input training samples for the first network were 10x10

pixels images of traffic signs obtained by localization
process on initial images. Input samples for speed limit
MLP were 6x12 pixels clear images of decimal digits, and
their copies with random noise added on the pattern. Noise
was created by flipping 10% of the bits in the original
binary image.

C. Determining the speed limit

In order to analyze the numbers in the speed limit sign, a
segmentation algorithm must be employed to correctly
separate the digits. A straightforward algorithm searches
for maxima in the vertical projection of the input image.

Fig. 3. Input image (top) and the corresponding vertical
projection (bottom)

It is possible that some artifacts or noise will remain in
the obtained digit after the segmentation is complete. To
minimize such interferences, we extract the primary
connected component (Fig. 4)

Fig. 4. Example of a binary image and the corresponding
connected components

The extracted digit is then normalized to a size of 6x12
pixels and transformed into the input vector for the digit
classifier.

Along a classification by neural network, we developed
another method of digit-based classification based on
structural analysis.

Structural analysis deals with more complex structures
than pixels or edges. For example, it considers loops, line
ends and junctions. In order to extract this high-level
information from a binary image, we must obtain the
skeleton of the digit by thinning the object. The procedure
of skeletonization is actually a reduction of an object to a
graph, and it is mathematically defined with a medial axis
transform. Fig. 5. shows an example of skeletonization.

Fig. 5. Original digit (left) and its skeleton (right)

After the skeleton has been obtained, we can extract
structural features from it. We consider line ends, junctions
and loops, as shown in Fig. 6.

Fig. 6. Line ends (a), junctions (b),(c) and loops (d),(e)

Line end is defined simply as a black pixel with only one
black neighbor pixel. Junctions can be found by counting
the number of white-black transitions in the 8-pixel
neighborhood of the observed pixel. For determining the
number of loops, we can invert the image and search for
connected components. In the end we subtract 1 from total
number of components, because it represents the
background.

Each digit can be described with the number of distinct
features and their relative positions in the image. For
example, “0” is the only digit with one loop and zero line
ends. Digits “1” and “2” have the same number of features
(two line ends and zero junctions and loops), but their

relative and absolute positions differ. We can use this
information to directly distinguish the digits.

V. SIGN TRACKING

In a video sequence, a sign will typically appear through
multiple consecutive frames. Due to the imperfectness of
the detection procedure, the sign might not be detected in
every frame. Additionally, there is a possibility that false
positives will appear. In order to efficiently track only the
sign that is actually in the video, the system would have to
remember information from previous frames and use it to
correct the detection in the current frame.

We propose a system which uses an auto-degrading
reinforcement principle. It is based on two premises:

1. Auto-degradation: The system should have a

short-term memory which only remembers
information in the certain amount of newest
frames. The system „forgets“ older information.

2. Reinforcement: The system should be updated if
an object is detected in the current frame.

The auto-degradation ensures that the information in the
nearer past will have more impact than the older
information.

Such system can be implemented as a cluster of
accumulators. Each accumulator represents a certain object
that can be tracked. The value stored in the accumulator is
proportional to the number of detections of the respective
object. When an object is detected, the respective
accumulator's value is increased by a certain amount.
Objects not detected have their accumulators' values
decreased. If a value in one or more of the accumulators
becomes greater than the defined threshold, the object is
considered to be tracked. If the tracked object leaves the
field of view, the respective accumulator's value will be
decreased through time. When it falls under the threshold,
the object ceases to be tracked.

VI. SOFTWARE SYSTEM AND RESULTS

In our work, we developed a software system that
implements all of the described algorithms. The system
consists of two front-end applications with equivalent
program core. The first application can be used to detect
and recognize traffic signs in a stationary image, with an
easy-to-use graphical user interface (Fig. 7)

The second application uses a video file as its input and
can be used to detect traffic signs in the video in real-time.
The video application uses the same program core as the
static image application, with the addition of an object
tracking subsystem.

The developed system was tested using a test set of 146
static images (for the first application) and a video
sequence in duration of 98 minutes incorporating 128
traffic signs. The results are shown in Table IV. The
system has a 73% hit ratio. 15% of all errors are caused by

misdetections, while the other 13% are errors in
classification

Fig. 7. Graphical user interface for detection of signs in static
images

Fig. 8. Video application with a recognized speed limit traffic

sign

TABLE IV
Static image application experimental results

 Number Percentage

Total number of signs 146 100%

Correctly recognized 106 72.6%

Detection errors 22 15.1%

Classification errors 10 13%

Results obtained from the video application are shown in

Table V. The noted performance excels the performance of
the static image application. Since the only difference
between the two applications is the addition of the object
tracking algorithm, we conclude that the improved
performance is the result of the increased amount of
processed frames. For example, misdetection in a frame
can be rectified by a correct detection in one of the
following frames.

The application was tested on a dual core Athlon
processor (X2 5600+) with an average speed of 21 frames
per second and a dual core Intel processor (2,2 GHz) with
an average speed of 30 frames per second. The improved
performance on Intel processors is caused by the fact that
the OpenCV library uses optimized instructions on Intel

platforms, and even makes use of the Intel Performance
Primitives (IPP) if they are present.

TABLE V
Video application experimental results

 Number Percentage

Total number of signs 128 100%

Correctly recognized 106 82.8%

Detection errors 13 10.16%

Sign classification errors 7 4.6%

Speed limit errors 2 1.56%

False positives 20

VII. CONCLUSION AND FUTURE WORK

We developed a system that recognizes traffic signs
with real-time application as the main goal. With this goal
in mind we used the Viola-Jones detection algorithm and
neural networks for classification. The results obtained
from the developed software show that our system is
applicable for real-time video processing. Furthermore, we
conclude that the system has better results when used on a
video sequence, compared to the standard approach of
traffic sign detection in static images. Relatively low error
rates in classification stage indicate that the multilayer
perceptron can be successfully used as a classifier of
traffic signs and digits.
Further improvements of the system should include a
larger number of supported traffic sign classes. Currently,
the main holdback is relatively low number of training
samples for less frequent traffic signs. In addition, some
problems could arise when training the neural network
with a larger number of classes due to the increased
dimensionality of the search space. There is also a problem
of similarity between some traffic sign classes.

Other improvements would include recognition of signs
of different shape (triangular, for example), using more
advanced methods of feature extraction such as principal
component analysis, and increasing the code portability by
implementing the functions from external program
libraries, which could prove useful when implementing the
system on different platforms or embedded systems.

REFERENCES

[1] W. D. Shaposhnikov , D. G. Shaposhnikov , Lubov. N ,
Er V. Golovan , A. Shevtsova, Road Sign Recognition
by Single Positioning of Space-Variant Sensor, Proc.
15th International Conference on Vision Interface, 2002,
pp. 213-217.

[2] Andrzej Ruta, Yongmin Lia, Xiaohui Liu, Real-time
traffic sign recognition from video by class-specific
discriminative features, Pattern Recognition, Vol. 43,
2010, pp. 416-430.

[3] S. Tominaga, Color image segmentation using three
perceptual attributes, Proc. CVPR-86, 1986, 628–630.

[4] R. Ohlander, K. Price, D. Reddy, Picture segmentation
using a recursive region splitting method, Computer
Graphics Image Processing Conference 13, 1978, pp.
224–241.

[5] X.W. Gao, L. Podladchikova, D. Shaposhnikov, K.
Hong, N. Shevtsova, Recognition of traffic signs based
on their colour and shape features extracted using human
vision models, Journal of Visual Comunication and
Image Representation, 2006, pp. 675-685.

[6] John Hatzidimos, Automatic Traffic Sign Recognition in
Digital Images, Proceedings of the International
Conference on Theory and Applications of Mathematics
and Informatics - ICTAMI 2004, Thessaloniki, Greece,
pp. 174-184.

[7] V. Barrile, M. Cacciola, G. M. Meduri, F. C. Morabito,
Automatic Recognition of Road Signs by Hough
Transform, "International archives of the
photogrammetry, remote sensing and spatial information
sciences", n. XXXVI Part 5, 2008, pp. 62-67.

[8] Paul Viola and Michael Jones. Robust real-time object
detection. International Journal of Computer Vision,
2004, pp. 137-154.

[9] C. Bahlmann, Y. Zhu, Visvanathan Ramesh, M.
Pellkofer, and T. Koehler. A system for traffic sign
detection, tracking, and recognition using color, shape,
and motion information. Intelligent Vehicles Symposium,
2005, pp. 255–260.

[10] Karla Brkic, Axel Pinz and Sinisa Segvic ``Traffic sign
detection as a component of an automated traffic
infrastructure inventory system'', in Proc. of the annual
Workshop of the Austrian Association for Pattern
Recognition (OAGM/AAPR), Austria, 2009, pp. 1-12.

[11] Keller, C.G. Sprunk, C. Bahlmann, C. Giebel, J.
Baratoff, G., Real-time recognition of U.S. speed signs,
Intelligent Vehicles Symposium, 2008 , pp. 518-523.

[12] Ach, R.; Luth, N.; Techmer, A., Real-time detection of
traffic signs on a multi-core processor, Intelligent
Vehicles Symposium, 2008, pp. 307–312.

[13] Sho Shimamura, Satoshi Yonemoto, Road Sign
Recognition with Color and Edge based features, IEICE
Tech. Rep., vol. 108, no. 471, 2009, pp. 23-28.

[14] Ghica, D., Si Wei Lu, Xiaobu Yuan, Recognition of
traffic signs by artificial neural network, IEEE
International Conference on Neural Networks, 1995, pp.
1444-1449.

[15] Hua Huang, Chao Chen, Yulan Jia, Shuming Tang,
Automatic Detection and Recognition of Circular Road
Sign, Mechatronic and Embedded Systems and
Applications, MESA 2008, pp. 626-630.

[16] Bogusław Cyganek, Road Signs Recognition by the
Scale-Space Template Matching in the Log-Polar
Domain, Proc. of the 3rd Iberian conference on Pattern
Recognition and Image Analysis, Part I, 2007, pp. 330-
337.

[17] Freund, Y., Schapire R. A Short Introduction to Boosting.
Journal of Japanese Society for Artificial Intelligence,
1999, pp. 771-780.

[18] R. Lienhart, A. Kuranov, V. Pisarevsky, Empirical
Analysis of Detection Cascades of Boosted Classifiers for
Rapid Object Detection, DAGM'03, 25th Pattern
Recognition Symposium, Germany, 2003, pp. 297-304.

[19] G. Cybenko, Approximation by superpositions of a
sigmoidal function, Mathematics of Control Signals and
Systems 2,1989, pp. 303–314.

[20] K. Funahashi, On the approximate realization of
continuous mappings by neural networks, Neural
Networks 2, 1989, pp. 183–192.

[21] C. M. Bishop, Neural Networks for Pattern Recognition,
Oxford University Press, 1995.

[22] T.W. Ridler, S. Calvard, Picture Thresholding Using an
Iterative Selection Method, SMC(8), 1978, pp. 629-632.

[23] L.G. Shapiro, G.C. Stockman, Computer Vision, Prentice
Hall, 2002.

