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Abstract. We propose a novel three-layered approach for semantic seg-
mentation of building facades. In the �rst layer, starting from an over-
segmentation of a facade, we employ the recently introduced machine
learning technique Recursive Neural Networks (RNN) to obtain a proba-
bilistic interpretation of each segment. In the middle layer, initial labeling
is augmented with the information coming from specialized facade com-
ponent detectors. The information is merged using a Markov Random
Field de�ned over the image. In the highest layer, we introduce weak

architectural knowledge, which enforces the �nal reconstruction to be ar-
chitecturally plausible and consistent. Rigorous tests performed on two
existing datasets of building facades demonstrate that we signi�cantly
outperform the current-state of the art, even when using outputs from
lower layers of the pipeline. In the end, we show how the output of the
highest layer can be used to create a procedural reconstruction.

1 Introduction

One of the biggest challenges in 3D city modeling is the accurate reconstruction
of building facades. For many applications, simple plane �tting and texturing
is not enough. It is often essential to semantically identify the facade elements
(windows, doors, balconies, etc.) and their layout. This task is not only di�cult
because of the vast diversity of buildings, but also because of shadows, occlusions
and re�ections.

The state-of-the-art methods for automated facade parsing assume that an
appropriate shape grammar is available from the outset [1]. This assumes that
one has strong prior knowledge about the structure of the facade, e.g. that it
follows the Haussmann style and therefore a grammar restricted to that style
can be invoked. Here, we make no such assumptions, yet get better results. The
proposed approach can deal with a wide gamut of styles. Yet, as more restrictive
knowledge should be used when available, we show that our method outperforms
the state-of-the-art by a still larger margin in the presence of style information.
Moreover, we demonstrate how procedural rules and thus shape grammars can
be derived based on the segmentation, rather than vice-versa. This is an im-
portant step forward, avoiding the need for the prior, manual construction of
style-speci�c grammars.

Our proposed facade parsing method consists of three distinct layers. In the
�rst layer, a supervised training method learns the facade labeling based on
an initial oversegmentation. For this purpose we utilize the recently developed
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Fig. 1. The proposed three-layered approach to facade parsing.

Recursive Neural Networks (RNN) [2]. In the middle layer we introduce the
knowledge about distinct facade elements, such as doors and windows. The raw
RNN output is then combined with the information from object detectors trained
to detect architectural elements (see Fig. 1). We pose the merging of RNN and
detector output as a pixel labeling problem, modeled as a 2D Markov Random
Field over the pixels. The multi-label MRF is then solved using graph cuts. Fi-
nally, the top layer introduces architectural concepts which encourage the facade
reconstruction to assume a more structured con�guration. This knowledge is en-
coded as a set of rules directly observable in the images, in contrast to shape
grammar approaches, where some concepts (e.g. vertical alignment) are implicit
or hidden in the grammar derivation. Our approach also enables modeling of
irregular facades, as we use the architectural concepts as guidelines, not as hard
constraints.

Our main contributions are as follows:

(1) a novel three-layer approach for facade parsing, utilizing low-level infor-
mation from the semantic segmentation, middle-level detector information about
objects in the facade, and top-level architectural knowledge; (2) a rigorous evalu-
ation on two di�erent datasets which shows that we outperform the state-of-the-
art in facade parsing by a signi�cant margin; (3) the concept of weak architectural
principles, which introduce the high-level knowledge needed for making the �nal
reconstruction architecturally plausible; (4) updated annotations for the facade
dataset of [3], which are closer to the ground truth.



2 Related Work

There already exists a signi�cant body of work on facade extraction and parsing
from ground imagery. Zhao et al. [4] presented an algorithm that parses such
imagery into buildings, grass and sky, followed by the partitioning of buildings
into individual facades. This facade splitting problem was also studied by [5,6],
where repetitive patterns provide cues to �nd the correct boundary between
facades. Another approach was presented in [7], where a scene classi�cation step
identi�es input images that contain facades. After automated image recti�cation,
buildings are split into individual facades. We demonstrate on the eTRIMS [8]
dataset that our approach can extract facades even in cluttered scenes. However
our focus is the semantic segmentation of already isolated and recti�ed facades.

Xiao et al. [9,10] target realistic visualization without much semantic en-
coding in the reconstruction. Other authors attempt to infer structure starting
from a set of basic elements, such as rectangles [11] or windows [12]. These ap-
proaches, however, also depend on the strong assumption of element repetition.
Probabilistic approaches to building reconstruction started with the work of Dick
et al. [13], where a building is assumed to be a 'lego' set of parameterized prim-
itives. An expert is needed to set the model parameters and prior probabilities
for full Bayesian inference.

For facade parsing, many approaches employ a procedural grammar, explic-
itly or implicitly. Müller et al. [14] detect symmetries and repetitions using Mu-
tual Information to generate an instance of a procedural model. The approach
was extended in [15], where images with strong perspective distortions are used
to infer vanishing points and 3D information from a single image. Although these
approaches produce good results in facade parsing, they assume strong priors
on the input facades, i.e. that they consist of a rather regular window grid.
Other grammar-based approaches include stochastic grammars [16], rjMCMC
for the construction of a grammar tree [17], and hybrid bottom-up/top-down
approaches [18]. Good results were reported by Teboul et al. [1], where facade
reconstruction was postulated as a problem of �nding the correct parameters of
a pre-speci�ed shape grammar. A random-walk algorithm was used to �nd the
optimal values of the parameters. Recently, the approach was enhanced [19] with
a novel optimization scheme, based on Reinforcement Learning. In this paper,
we evaluate our system on the dataset from [1,19], for which we also provide a
more precise set of annotations.

The bene�t of relying on shape grammars is that they strongly restrict the
search space during parsing. Yet, the grammar may not be expressive enough to
cover the variance in real world data. Furthermore, an expert is needed to write
the grammars for the relevant styles. Human intervention is also required to pre-
select the grammar appropriate for each speci�c building. The latter requirement
can be mitigated by applying style classi�ers [7] that automatically recognize the
building style from low-level image features. Still, using a style grammar would
imply it needs to be available beforehand, which at least for the moment is
a limiting issue. It is easier to generate style classi�ers than style grammars.
Therefore, we chose not to assume there is such prede�ned grammar. In fact,



our guiding principle is to derive procedural grammars based on automatically
parsed facades, rather than vice-versa. Some interactive work in that vein has
already appeared. Aliaga et al. [20] infer simple grammatical rules from a user-
given subdivision of a building. Bokeloh et al. [21] presented a framework applied
on synthetic 3D data.

In summary, the current state-of-the-art in semantic facade parsing needs
the prior speci�cation of a style-speci�c grammar. Our aim is to outperform
such systems, without needing such a grammar, allowing our approach to deal
with a wider variety of buildings. Moreover, the order can thus be reversed by
letting the image parsing control the grammar derivation, rather than using the
grammar to support the image parsing. The latter selection can be automated
by using style classi�ers, which, as said, require far less human interaction than
the prior construction of entire grammars.

3 Datasets description

We evaluate our approach on two datasets, the �Ecole Centrale Paris Facades
Database� [3] and the eTRIMS database [8]. Since we are primarily interested
in accurate modeling of building facades, we focus more on the ECP database,
as it provides labels for multiple facade elements. To validate our approach, we
show that we also outperform the state-of-the-art results reported on eTRIMS.

ECP Database contains 104 images of recti�ed and cropped facades of Hauss-
mannian style buildings in Paris, with corresponding annotations. There are 7
di�erent labels in the dataset. We de�ne this set as Ψ = {window, wall, balcony,
door, roof, sky, shop}. An earlier version of the dataset contained only 30 images
but with very accurate annotations. Unfortunately, in the larger dataset images
are labeled using a Haussmannian-style grammar. This results in a labeling clos-
est to the ground truth given the restriction that the labeling is an instantiation
of the grammar. As a consequence, these annotations are often imprecise or even
plainly wrong. For example, windows that are not vertically aligned with the rest
of the facade are not supported. We provide a new set of annotations that better
�ts the actual ground truth, which we present in the supplementary material.
For evaluation purposes, we perform a 5-fold cross-validation on this dataset. In
each fold, we use 60 images for training, 20 for validation, and 20 for testing.

eTRIMS Database contains 60 images, along with accurate pixel-wise anno-
tations. In contrast to the ECP dataset, images are not recti�ed and the facades
are not cropped. In order to compare our approach with the reported result from
[22] we automatically rectify the input images using the algorithm of [23]. Fur-
thermore, the labels of this dataset are quite di�erent compared to the former
dataset: Ψ ={building, car, door, pavement, road, sky, vegetation, window}. For
evaluation, we perform a 5-fold cross-validation as in [22] with random subsam-
pling of 40 images for training and 20 for testing. Note that we do not create a
validation set due to the limited number of images in the dataset.



Fig. 2. Basic RNN structure. Two input segments are transformed into a semantic space
and merged into a supersegment. The supersegment's semantic vector is recursively
combined with other semantic vectors by repeating the same network structure.

4 Bottom Layer: Recursive Neural Network for Semantic

Segmentation

Principles of RNN. The Recursive Neural Network [2] is a parsing algorithm
designed to capture the recursive structure commonly found in natural and man-
made scenes. Starting from an initial oversegmentation of an image, we use
the network to create a binary parse tree of the whole image. This bottom-up
approach is performed by recursively combining segments into supersegments
until all the segments have been merged. See Fig. 2 for an illustration.

The starting point of our bottom layer is an oversegmentation of the image
into small regions which represent objects or object parts. We extract features
from these regions, and present them to the input layer of the RNN. This layer
serves the purpose of transforming the input feature space to a semantic space
of given dimensionality. The representation is computed by:

si = f(W semFi + bsem) (1)

where Fi represents the input feature vector, W sem the network's input layer,
and si the semantic representation of the segment. bsem is the bias, which we
set to zero in all our experiments.

There are exponentially many possible parsing trees for a given oversegmen-
tation. As no e�cient dynamic programming solution exists for this problem, the
RNN performs a greedy approximation. At each step of the process, all neigh-
boring pairs of segments are considered for merging. The semantic vector of a
supersegment created by merging a pair of segments is computed by:

s(i,j) = f(W [si; sj ] + b) (2)



where si; sj is a concatenation of the two semantic vectors, W is the merging
layer of the RNN, and s(i,j) represents the semantic vector of the supersegment.
The latter has the same dimensionality as the input segments, and it can be
recursively combined with other segments.

We use an additional scoring layer of the network to compute the score of the
semantic vector of the supersegment. This layer is trained to output a high score
when two segments correspond to the same object (same label in the training
data). Ideally, the network will learn to always combine segments of the same
label before combining the neighboring objects to form the scene. The score of
the supersegment is computed by:

score(i,j) = W scores(i,j) (3)

where W score represents the scoring layer of the RNN.
In addition to computing the scores, we compute the class label of each

segment. More precisely, a softmax layer is added on top of the semantic repre-
sentation, which produces a probability distribution of the labels for the given
segment. The likelihood of each pixel belonging to a label ψ ∈ Ψ is:

P rnn (ψ | ci) = softmax (W labelsi) (4)

where ci is a clique of pixels corresponding to the segment with the semantic
representation si andW

label represents the class prediction layer of the network.
We obtain the pixelwise merit P rnn (ψ | xi) by evaluating the segment-wise like-
lihood on each pixel of the segment.

Implementation Details. We set the length of vectors in the semantic
space to 50. We do not observe any signi�cant improvement in the results if we
use larger vectors, while the training time becomes much longer. However, using
shorter vectors leads to a noticeable drop in performance. For the preparation of
the data, we follow the approach of [2], with some modi�cations. First, the input
image is oversegmented into regions using the mean-shift segmentation algorithm
of [24]. We prefer to have a more �ne-grained segmentation, so as not to combine
di�erent facade elements in a single region. On average, we obtain 643 regions
per image (average image size is 600*400 pixels). Next, the appearance (color
and texture), geometry, and location features are extracted for each region using
the procedure of [25]. We use the default parameters from the implementation
in STAIR Vision Library [26], which results in feature vectors of size 225.

Training. For the training of the network, we provide the oversegmented im-
ages, as well as the ground truth annotations. The training attempts to minimize
the error between the parse tree proposed by the network and the set of correct
parse trees which are de�ned by the annotations. A variant of backpropagation
is used to �nd the model parameters: W sem, W , W score and W label.

Interpreting the Results. After the training has �nished, a query image
is presented to the network. The trained RNN builds a parse tree for this image,
assigning a score to each merger of the segments and a multinomial label dis-
tribution to each segment. We can then read out the probabilities in the leaves
of the tree, and label the superpixels with the most likely label. However, we



keep the distributions P rnn (ψ | xi) and propagate them to the higher levels of
our pipeline, as they contain more information than the maximum-likelihood
estimate.

5 Middle Layer: Introducing Objects Through Detectors

The RNN requires pre-segmented images as input, where the segmentation pa-
rameters are �xed for all images. Consequently, the results of the bottom layer
depend on the noisy boundaries of the initial segmentation. By using object de-
tectors we receive labeling information from a second source, so we can estimate
better boundaries for elements such as doors and windows.

Window and Door Detection. We use our own GPU-based implemen-
tation of the Dollar's Integral Channel Features detector [27,28]. This detector
provides state-of-the-art results for pedestrian detection and proves to be equally
suited for the task of window and door detection (see Fig. 3). Following the set-
tings in the original paper we use depth-2 decision trees boosted by discrete
AdaBoost. For feature evaluation we use 6 gradient orientation channels, 1 gra-
dient magnitude channel and the 3 LSV color channels. The training is performed
on recti�ed images.

Detector Output. Each detector outputs a set of detections di, with re-
spective scores ri. We describe our algorithm on the example of the window
detector. The label distribution of a pixel xi ∈ di in the test image can be
set naively: 1 for the window label, 0 for others. However, in practice, a typical
window detection will not only contain window pixels, but also pixels from other
classes to a certain extent. We wish to capture this distribution by analysing all
the detections in the training set. For each of the N detections in the training
set, we create a probability distribution Q:

Ql(d) = nl/ntotal (5)

where d is the detection, nl is the number of pixels in the ground truth corre-
sponding to the label l, and ntotal the total number of pixels within the bounding
box. For each of the scores ri ∈ R, we create a cumulative probability distribu-
tion:

Pc(ri) =
1
γ

∑
r∈ R:r≥ ri

Q(dr) (6)

where R is the set of all detection scores in the training set, dr denotes a detection
with score r, and γ is the normalization constant that makes sure that the
elements of Pc(ri) sum up to one. Pc is then a set of distributions which we
visualize in Fig. 3(b). Finally, the label distribution of every pixel in the test
image is given by:

P detwin(xi) =

{
Pc(NN(r)), xi is covered by dr

Puniform, otherwise
(7)

whereNN(ri) represents the nearest-neighbor score in the training set. All pixels
not covered by a detection are assigned a uniform probability distribution.



(a) (b)

Fig. 3. (a) Precision-recall curve of our window detector and an example image with
detector output. (b) Visualization of the Pc look-up table for the window detector. Red
color indicates window class, green wall, blue balcony. As the detection score decreases,
the uncertainty between labels increases.

Incorporating Detector Knowledge With Markov Random Fields. To
merge the information coming from the lower level of the pipeline and the middle
level knowledge introduced by the detectors, we formulate a labeling problem by
placing a 2D Markov Random Field over the image pixels. We seek to minimize
the total energy, de�ned as the sum of unary potentials for each node, and the
sum of all pairwise potentials between neighboring pixels:

E(ψ) =
∑
xi

Φs (ψi | xi) + λ
∑
xi

∑
xj∼ xi

Φp (ψi, ψj | xi, xj) (8)

where xi is an image pixel, while the relation ∼ represents the 4-pixel neighbor-
hood. Here, λ corresponds to the smoothing parameter, as the pairwise potentials
follow the Potts model:

Φp (ψi, ψj | xi, xj) =

{
0, if ψi = ψj

1, otherwise
(9)

The unary potential of a pixel is a weighted sum of the low-level information
(RNN labeling) and detector potentials.

Φs (ψi | xi) = − logP rnn (ψ | xi)−
∑

l∈{win,door}

αl logP detl (ψ | xi) (10)

We solve this labeling problem using graph cuts [29] and obtain a solution de-
picted in Fig. 1.

Parameters. All detectors went through three iterations of training. For
the �rst iteration we randomly select negative samples and the following two



iterations extend the set of negatives using bootstrapping. All positive samples
are vertically mirrored to enlarge the training set size. 30000 randomly selected
features build the feature pool for the AdaBoost algorithm. The window detector
is trained on a diverse set of windows outside the ECP and eTrims datasets,
which contains 2154 examples of windows. The door detector is trained on the
same data as the RNN, respecting the 5-fold cross-validation splits.

There were only 3 parameters to be selected in this layer: the smoothing
factor λ and the weights for the two detectors αwin and αdoor. We estimated
these parameters on a validation set for the ECP dataset. We set them to λ = 6.5,
αwin = 0.75 and αdoor = 7.

6 Top Layer: Weak Architectural Principles

In the �rst two layers we have not used any information about the facade struc-
ture. This re�ects in results which, although convincing quantitatively, su�er
from errors such as missing or misplaced facade elements, which makes it dif-
�cult to derive convincing models. To combat this problem, we introduce the
concept of weak architectural principles, summarized in Table 1.

Table 1.Weak architectural principles used to complement the segmentation results of
the �rst 2 layers. A �x� in the �alter� column denotes that the principle adjusts element
borders. The principle may also remove or add new elements. Last two columns indicate
which principles are used for each of the datasets.

Principle Alter Add Remove ECP eTrims

(Non-)alignment: vertical and horizontal x - - x x
Similarity of di�erent windows of the same facade - x - x x
Facade symmetry - x x x x
Co-occurence of elements - x x x -
Equal width/height in a row or column x - - x -
Door hypothesis: �rst �oor, touching ground x x x x -
Vertical region order: {shop∗, facade+, roof ∗, sky∗} x - - x -
Running balcony in the 2nd and 5th �oor x x x x -

The principles listed above are used to encode high-level architectural knowl-
edge, and they can be directly evaluated in facade images. Some of them can be
applied on a vast amount of di�erent facades, while others may apply speci�-
cally for a certain architectural style. Furthermore, we can use the ground-truth
labeling of the validation set to automatically deduce which principles should
hold.

The principles we formulated mostly apply to objects in the facade (window,
balcony, door). The initial bounding boxes of these objects are computed from
the connected components of the pixelwise maximum over Φs. The minimal
bounding rectangle R = (x1, y1, x2, y2) around the connected components is the
starting hypothesis for all elements.



The (non-)alignment principle is based on the observation that many
facade elements are either exactly aligned or clearly o�-center (see Fig. 4 left).
We formulate this principle as an energy optimization problem where we estimate
a locally optimal solution using the BFGS Quasi-Newton method. The energy
for an object class is de�ned as:

E =
∑

r1,r2∈R

(
ωlρτw

(x(r1)
1 − x(r2)

1 ) + ωrρτw
(x(r1)

2 − x(r2)
2 ) + (11)

ωtρτh
(y(r1)

1 − y(r2)
1 ) + ωbρτh

(y(r1)
2 − y(r2)

2 )
)

(12)

ρτi
(z) =

{
τ2

i

6 (1− [1− z/τi]2)3, if |z| ≤ τi
τ2

i

6 , if |z| > τi
(13)

For each pair of rectangles the bounded in�uence function (13) rates their
weighted top, bottom, left and right (ωt, bottom ωb, ωl and right ωr) alignment.
The function has a constant value as soon as the distance between boundaries
exceeds τi.

The similarity principle is applied similar to [30]. Every detected ele-
ment votes for similar elements using an ISM-like voting scheme. Self similarity
features [31] are calculated at Harris corner points. For all features inside the
window bounding boxes, a vote vector to the center of the box is cast from the
positions of the n nearest neighbors into a global voting space. The maxima
of that voting space belong to both the initial detections and new detection
hypotheses.

Harris corners are also used as a simple measure for vertical symmetry. The
interest points are mirrored about a symmetry line hypothesis. A match is an
interest point that has a mirrored counterpart. The maximum of the matches
divided by the points under consideration de�nes the symmetry line and the
symmetry score. If symmetry is detected (symmetry score > τsym), symmetric
elements are mirrored, overlapping ones are removed and for the remaining ones
we have 3 possibilities: add a new mirrored element, remove or keep the existing
one. The decision between adding or removing an element is based on the con�-
dence score of each element, computed from Φs. If an element has a con�dence
higher than τkeep, we simply keep it. We employ the same procedure for the 3
possibilities when we observe only one of two co-occuring elements.

If the principle of equal width or height of elements along a row or column
holds in the validation set, this property will also be enforced in the testing set.
If there has not been a door detection in the image, a door hypothesis is
generated based on gradients in the probability map, average probability and
relative estimated sizes to other facade elements.

The vertical region order principle searches for the wall area and option-
ally for shop, roof and sky in the given order. The split lines are optimized over
the probability densities of the regions and the split lines between regions.



Parameters. In Equations 11 and 12 the parameter τw is set to half the me-
dian of the objects' width, and τh to half the median of the objects' height.
With these settings, completely misaligned windows are not shifted by the min-
imization. The threshold τsym, for considering a facade as being symmetric, is
set conservatively to the highest score of an actually non-symmetric facade in
the validation set. The number n of the nearest neighbors for similarity voting
is set to 10. τkeep is also estimated from the validation set.

7 Results

We compare our results with the state-of-the-art algorithms reported on the two
evaluated datasets. Table 2 shows the results that we obtain on each layer of the
pipeline. Due to limited space, we report only the class accuracies, while the full
confusion matrices may be found in the supplementary material. Figure 4 shows
several examples of the �nal output of our system.

ECP Database. On the left side of Table 2, our results are compared with the
approach of [19]. The baseline is run as described in [32]. We perform the 5-fold
cross validation on the same dataset.

We see a clear performance boost already at the �rst layer. This improvement
is in part due to better bottom-up features that we use, compared to the pixel
level classi�er used in [32]. Another improvement comes from the classi�er itself:
if we replace the RNN region classi�er with an SVM, the results drop sharply by
13%. The middle layer increases the accuracies of window and door classes, as
expected due to the introduction of object detectors. The drop in balcony class
comes from the fact that they are often transparent, and the window detector
�nds the whole window structure partially occluded by the balcony. Furthermore,
the usage of the smoothness term in the MRF slightly improves some of the other
classes. By introducing high-level knowledge through the top layer, we obtain
even better results in almost all of the classes (Table 2, left). However, when
parsing the image on the highest level, pixel accuracy becomes an unreliable

Table 2. Results on ECP (left) and eTrims (right) dataset, for each of the layers of
our system. Class accuracies are shown in percent, as well as the total pixel accuracy.

Class Baseline[32] Layer 1 Layer 2 Layer 3

window 62 62 69 75

wall 82 91 93 88
balcony 58 74 71 70
door 47 43 60 67

roof 66 70 73 74

sky 95 91 91 97

shop 88 79 86 93

Pixel acc. 74.71 82.63 85.06 84.17

Class Baseline[22] Layer 1 Layer 2 Layer 3

building 71 89 90 86
car 35 67 66 67

door 16 24 20 18
pavement 22 35 35 35

road 35 47 47 47

sky 78 91 90 91

vegetation 66 82 83 81
window 75 72 75 80

Pixel acc. 65.8 81.11 81.94 80.81



measure of performance, as slight displacements of elements might produce high
error rates. Therefore, a qualitative evaluation would be more appropriate.

eTRIMS Database. The results we show for this dataset are obtained without
using the door detector in the middle layer, as there was insu�cient training data.
After the 5-fold cross-validation, we obtain the results on the right of Table 2.
Example output of the top layer may be seen in Fig. 5. It is clear that the bottom
layer of our approach already outperforms the baseline method[22], by a margin
of 15%. The only underperforming class is window. By introducing the window
detector in the middle layer we increase the performance of the window class,
and slightly decrease the accuracy of doors, due to the lack of a door detector
and the fact that windows are often detected on door regions. The results of
the top layer require some discussion. First, it is important to note that the
buildings in this dataset come from di�erent styles and have a huge variety of
appearances. They also contain a signi�cant amount of clutter and occlusions.
Also, the only existing facade elements in this dataset are windows and doors. As
we introduce additional windows through our architectural principles, it happens
that we reconstruct a window occluded by vegetation, which explains the small
drop in detection of vegetation class. Similarly, in some cases windows may be
introduced or enlarged in the wall area, which accounts for the small decrease
in building and door class accuracy, however still above the state-of-the-art.

Application: Image-based Procedural Modeling. The output of the top
layer is used in a straightforward procedural modeling scenario. We de�ne the
elements of the facade to be the terminal symbols of a procedural grammar:
window, balcony and door. As our top-layer segmentation output has a rather
strong structure with straight boundaries, it is a simple task to subdivide the
facade in a recursive way, following the borders between elements in the output.
The subdivision is stopped at the terminal symbols. This subdivision is encoded
as a set of splitting CGA rules in CityEngine [33]. A rendered model can be seen
to the far right in Fig.1.

Fig. 4. Examples of top-layer output on various buildings from the ECP dataset.



Fig. 5. Examples of top-layer output on various buildings from the eTrims dataset.

8 Conclusion and future work

We introduce a new method for facade parsing, operating on three levels of
abstraction on a facade image. A bottom-up RNN semantic segmentation is
utilized in the �rst layer, and then augmented with object detectors in the second
layer. The introduction of a third, architectural layer, enables us to utilize the
facade structure in order to make the �nal segmentation architecturally plausible.
We show that our method clearly outperforms the current state-of-the-art on two
di�erent facade parsing datasets.

We also demonstrate how the output of our system can be used for image-
based procedural modeling of facades. This enables us to infer procedural rules
from the output of our system, instead of relying on a priori de�ned procedural
shape grammars. However, the inferred rules are currently building instance-
speci�c, and non-parametric. Therefore, the next logical step is to extend the
approach to enable generalization between buildings of the same style. In that
way the tedious task of de�ning grammars for di�erent styles of buildings should
be automated.
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