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Related work

Rules are known in advance

 Metropolis Procedural Modeling 
(Talton et al. 2011)

 Random Exploration of the 
Procedural Space for Single-View
3D Modeling of Buildings 
(Simon et al. 2009)

Shape Grammar Parsing via 
Reinforcement Learning 
(Teboul et al. 2011)
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Related work

Rules are learned

 A Connection between Partial 
Symmetry and Inverse 
Procedural Modeling
(Bokeloh et al. 2010)

 Inverse procedural modeling 
by automatic generation of L-systems
(Št’ava et al. 2010)
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● Grammar learning

● Gold, 1967: No superfinite family of deterministic languages (including 
regular and context-free languages) can be identified in the limit

● Horning, 1969: Stochastic context free grammars can be learned from 
only positive examples

● Stolcke, 1994: Introducing Bayesian Model Merging (BMM) for HMM, 
SCFG and PAG induction

● Hwang et al, 2011: Rediscovering BMM for induction of probabilistic 
programs

● Talton et al, 2012: BMM is used to learn design patterns
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Method overview
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How can we use the learned grammar?

● Sampling novel buildings
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A simple parsing example
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Method overview
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Lattice creation

● Approach similar to Riemenschneider et al. 
(2012)

● Every rectangular region (tile) is labeled 
with the majority vote from the 
corresponding pixel labels
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Bayesian model merging

● Data incorporation: given a body of data, build an initial grammar which generates only 
the input examples.

● Model merging: propose a candidate grammar by altering the structure of the currently 
best grammar.

● Model evaluation: evaluate the fitness of the candidate grammar compared to the 
currently best grammar.

● Search: use model merging to explore the grammar space, searching for the optimal 
grammar
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Data incorporation
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Nonterminal merging:
Proposing candidate grammars

● Two nonterminals X
1
 and X

2
 are selected from the current grammar and 

replaced with a new nonterminal Y

● RHS occurrences are replaced:

● If Z
1
=Z

2
, μ

1
=μ

2
, λ

1
=λ

2
, productions are merged and their attribute sets joined

● LHS occurrences are also replaced:

● Productions of the form Y→Y are removed

● Restriction: X
1
 and X

2
 must be 'label-compatible'

Z
1
→μ

1
X

1
λ

1

Z
2
→μ

2
X

2
λ

2

Z
1
→μ

1
Yλ

1

Z
2
→μ

2
Yλ

2

merge

X
1
→λ

1

X
2
→λ

2

Y→λ
1

Y→λ
2

merge
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Evaluating candidate grammars

● Goal: find the best trade-off between fit to the input data D and a 
general preference for simpler models (MDL)

● From a Bayesian perspective:

maximize  P(G|D)~P(G)∙P(D|G)

posterior prior likelihood
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Evaluating candidate grammars

Prior term

● Structure prior follows the Minimum Description Length (MDL) 
principle

● P(G
s
) = e

● Grammar description length (in bits):

 

● Parameter prior is a symmetrical Dirichlet

P(G)=P(Gs)∙P(θg|Gs)

Structure prior Parameter prior

DL(Gs)=Σr∈R Σn∈(r∩N)log|N|

DL(Gs)
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Evaluating candidate grammars

Likelihood term
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Evaluating candidate grammars

Likelihood term

● To calculate the likelihood, one must integrate over the parameter 
prior...

● ...or, use the Viterbi assumption:

● Every input sample is generated by a single derivation tree of the 
grammar

● The likelihood of that sample is then the product of all rule probabilities 
used in the Viterbi derivation

● However, both the Viterbi derivations and the optimal values of rule 
probabilities θ

g
 are unknown!
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Evaluating candidate grammars

Likelihood term

● To calculate the likelihood, one must integrate over the parameter 
prior...

● ...or, use the Viterbi assumption:

● Every input sample is generated by a single derivation tree of the 
grammar

● The likelihood of that sample is then the product of all rule probabilities 
used in the Viterbi derivation

● However, both the Viterbi derivations and the optimal values of rule 
probabilities θ

g
 are unknown!

? (?)2 ?
i
:

P(
i
)=?
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Evaluating candidate grammars

Likelihood term

? (?)2 ?
i
:

P(
i
)=?
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Evaluating candidate grammars

Likelihood term

● Solution: Expectation-Maximization

● E-step: starting from an estimate of θ
g
, calculate the expected usage 

counts                 of each rule 

● Find Viterbi derivations of all input data, count the number of times each 
rule is used

● M-step: re-estimate the rule probabilities θ
g
:

? (?)2 ?
i
:

P(
i
)=?
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Evaluating candidate grammars

Likelihood term

● Solution: Expectation-Maximization

● E-step: starting from an estimate of θ
g
, calculate the expected usage 

counts                 of each rule 

● Find Viterbi derivations of all input data, count the number of times each 
rule is used

● M-step: re-estimate the rule probabilities θ
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Evaluating candidate grammars

2D Earley parsing

? (?)2 ?
i
:

P(
i
)=?
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Evaluating candidate grammars

2D Earley parsing

● How to find the Viterbi derivations in the E-step?

● Generalizing the Earley's string parser (Earley, 1970) to 2D
● Top-down parsing algorithm 

● Worst-case complexity is O(n3), but usually performs better

● e.g. O(n2) for unambiguous grammars

● Does not require the grammar to be in CNF 

● Calculation of Viterbi probabilities with the extension of (Stolcke, 1994)

? (?)2 ?
i
:

P(
i
)=?
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Evaluating candidate grammars

2D Earley parsing

● How to find the Viterbi derivations in the E-step?

● Generalizing the Earley's string parser (Earley, 1970) to 2D
● Top-down parsing algorithm 

● Worst-case complexity is O(n3), but usually performs better

● e.g. O(n2) for unambiguous grammars

● Does not require the grammar to be in CNF 

● Calculation of Viterbi probabilities with the extension of (Stolcke, 1994)

? (?)2 ?
i
:

P(
i
)=?

A. Martinović and L. Van Gool. Earley parsing for 2D stochastic context free grammars. 
Technical Report KUL/ESAT/PSI/1301, KU Leuven, 2013. 
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Search in model space

● Posterior calculation is modified using a global prior weight w

● Minimizing the energy

● w small: low generalization, search procedure stops earlier

● w large: increasing the tendency to generalize beyond data

● Greedy best-first search
● In each iteration, every pair of nonterminals is considered for merging

● All candidate grammars are evaluated

● The candidate grammar with minimum energy is accepted if this energy is lower than the 
current grammar's

● The rule probabilities are learned in each step using the EM procedure

E(G|D) =  w log P(G) – log P (D|G)
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Obtaining the final model

● Casting the induced grammar back to image space

1. Sequences of the same nonterminal symbol are collapsed, e.g.

2. For every rule                            , we fit a (k1)-variate Gaussian 
distribution                         to the set of its attributes

● This enables us to sample productions with continuous attributes in 
image space

X→λYYμ  {{s
1
,y

1
,y

2
,s

2
}} X→λYμ  {{s

1
,y

1
+y

2
,s

2
}}

collapse
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Parsing in image space

● Find the grammar derivation δ which
optimally describes the image

● Optimization is difficult:

1. Rule attributes can have continuous values

● Solution: Markov Chain Monte Carlo (MCMC) reduces optimization to sampling

2. Grammar is stochastic, the number of rules per derivation can change
● Solution: Reversible jump MCMC (rjMCMC)

● Posterior of a derivation δ given an image I:

Likelihood

Rule term Attribute term

Prior
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Parsing in image space

Likelihood

Rule term Attribute term

Prior
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Parsing in image space

● Boltzmann's transformation:

● Rule term: sum of negative log probabilities of all rules in derivation δ

● Attribute term: discrepancy between proposed and expected attributes

● Image term: discrepancy between Random Forest pixel classifier and 
labeling induced by terminal nodes in δ 

Likelihood

Rule term Attribute term

Prior
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Parsing in image space

● Boltzmann's transformation:
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Parsing in image space - rjMCMC
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Parsing in image space - rjMCMC

● rjMCMC with Metropolis-Hastings update

● Markov chain is initialized with a random derivation

● Two possible moves in every iteration:

● Diffusion move – parse tree doesn't change, dimensionality of α is preserved

● Jump move – a rule in the tree is resampled, dimensionality of α changes

● Improvements:

● Parallel tempering – 8 chains are run in parallel on different cooling schedules

● Delayed rejection – a jump move is always followed by a diffusion move, and 
the moves are accepted or rejected in unison
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rjMCMC diffusion move

● Select a random node hk in the derivation tree

● Sample from a Gaussian proposal distribution centered 
on the current parameters

Acceptance probability of the move



  

106/112

rjMCMC jump move

● A random node h is selected in the derivation tree

● A new rule is sampled from all rules applicable to selected LHS

● If RHS has different length, the whole subtree rooted on h is re-derived

● Topology of τ changes

● Dimensionality of α changes

Acceptance probability of the move

Probability of choosing
a nonterminal h in tree τ

Image and attribute
terms
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Parsing results

● ECP dataset

● Example: fold 1



  

108/112

Parsing results

● Quantitative analysis
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Generating novel designs
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Generating novel designs

w=1.0 w=0.3

● The effect of prior weight w on grammar generalization
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Future work

● State of the art in facade parsing

● Images → Labelings

● This paper

● Labelings → Grammar

● Combine the two approaches

● “Facade bootstrapping”

A. Martinović, M. Mathias, J. Weissenberg, and L. Van 
Gool. A three-layered approach to facade parsing. In 
ECCV, 2012
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Thank you
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