
Bayesian Grammar Learning for Inverse
Procedural Modeling

June 2013 | CVPR
Anđelo Martinović1, Luc Van Gool1,2

1ESAT/PSI/VISICS @ KU Leuven
2Computer Vision Lab @ ETH Zurich

2/112

Procedural modeling

3/112

Procedural modeling – Esri CityEngine

4/112

Procedural modeling – Esri CityEngine

5/112

Procedural modeling – Esri CityEngine

6/112

Procedural modeling – Esri CityEngine

7/112

Inverse procedural modeling

8/112

Related work

Rules are known in advance

 Metropolis Procedural Modeling
(Talton et al. 2011)

 Random Exploration of the
Procedural Space for Single-View
3D Modeling of Buildings
(Simon et al. 2009)

Shape Grammar Parsing via
Reinforcement Learning
(Teboul et al. 2011)

9/112

Related work

Rules are learned

 A Connection between Partial
Symmetry and Inverse
Procedural Modeling
(Bokeloh et al. 2010)

 Inverse procedural modeling
by automatic generation of L-systems
(Št’ava et al. 2010)

10/112

Related work

11/112

Related work

● Grammar learning

● Gold, 1967: No superfinite family of deterministic languages (including
regular and context-free languages) can be identified in the limit

● Horning, 1969: Stochastic context free grammars can be learned from
only positive examples

● Stolcke, 1994: Introducing Bayesian Model Merging (BMM) for HMM,
SCFG and PAG induction

● Hwang et al, 2011: Rediscovering BMM for induction of probabilistic
programs

● Talton et al, 2012: BMM is used to learn design patterns

12/112

Related work

● Grammar learning

● Gold, 1967: No superfinite family of deterministic languages (including
regular and context-free languages) can be identified in the limit

● Horning, 1969: Stochastic context free grammars can be learned from
only positive examples

● Stolcke, 1994: Introducing Bayesian Model Merging (BMM) for HMM,
SCFG and PAG induction

● Hwang et al, 2011: Rediscovering BMM for induction of probabilistic
programs

● Talton et al, 2012: BMM is used to learn design patterns

13/112

Related work

● Grammar learning

● Gold, 1967: No superfinite family of deterministic languages (including
regular and context-free languages) can be identified in the limit

● Horning, 1969: Stochastic context free grammars can be learned from
only positive examples

● Stolcke, 1994: Introducing Bayesian Model Merging (BMM) for HMM,
SCFG and PAG induction

● Hwang et al, 2011: Rediscovering BMM for induction of probabilistic
programs

● Talton et al, 2012: BMM is used to learn design patterns

14/112

Related work

● Grammar learning

● Gold, 1967: No superfinite family of deterministic languages (including
regular and context-free languages) can be identified in the limit

● Horning, 1969: Stochastic context free grammars can be learned from
only positive examples

● Stolcke, 1994: Introducing Bayesian Model Merging (BMM) for HMM,
SCFG and PAG induction

● Hwang et al, 2011: Rediscovering BMM for induction of probabilistic
programs

● Talton et al, 2012: BMM is used to learn design patterns

15/112

Related work

● Grammar learning

● Gold, 1967: No superfinite family of deterministic languages (including
regular and context-free languages) can be identified in the limit

● Horning, 1969: Stochastic context free grammars can be learned from
only positive examples

● Stolcke, 1994: Introducing Bayesian Model Merging (BMM) for HMM,
SCFG and PAG induction

● Hwang et al, 2011: Rediscovering BMM for induction of probabilistic
programs

● Talton et al, 2012: BMM is used to learn design patterns

16/112

Related work

● Grammar learning

● Gold, 1967: No superfinite family of deterministic languages (including
regular and context-free languages) can be identified in the limit

● Horning, 1969: Stochastic context free grammars can be learned from
only positive examples

● Stolcke, 1994: Introducing Bayesian Model Merging (BMM) for HMM,
SCFG and PAG induction

● Hwang et al, 2011: Rediscovering BMM for induction of probabilistic
programs

● Talton et al, 2012: BMM is used to learn design patterns

17/112

Related work

● Grammar learning

● Gold, 1967: No superfinite family of deterministic languages (including
regular and context-free languages) can be identified in the limit

● Horning, 1969: Stochastic context free grammars can be learned from
only positive examples

● Stolcke, 1994: Introducing Bayesian Model Merging (BMM) for HMM,
SCFG and PAG induction

● Hwang et al, 2011: Rediscovering BMM for induction of probabilistic
programs

● Talton et al, 2012: BMM is used to learn design patterns

18/112

Method overview

19/112

How can we use the learned grammar?

● Sampling novel buildings

20/112

How can we use the learned grammar?

● Sampling novel buildings

21/112

How can we use the learned grammar?

● Parsing existing facades

22/112

How can we use the learned grammar?

● Parsing existing facades

23/112

How can we use the learned grammar?

● Parsing existing facades

24/112

What kind of a grammar can we learn?

2D-ASCFG

25/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

26/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

Nonterminal symbols

27/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

Nonterminal symbols

Terminal symbols

28/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

Nonterminal symbols

Terminal symbols

Axiom

29/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

Nonterminal symbols

Terminal symbols

Axiom

Production rules

30/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

Nonterminal symbols

Terminal symbols

Axiom

Production rules

Context-Free

31/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

X→ λ
1
λ

2
...λ

n

Nonterminal symbols

Terminal symbols

Axiom

Production rules

Context-Free

32/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

X→ λ
1
λ

2
...λ

n

Nonterminal symbols

Terminal symbols

Axiom

Production rules

Context-FreeStochastic

33/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

X→ λ
1
λ

2
...λ

n

Nonterminal symbols

Terminal symbols

Axiom

Production rules Rule probabilities

Context-FreeStochastic

34/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

X→ λ
1
λ

2
...λ

n

Nonterminal symbols

Terminal symbols

Axiom

Production rules Rule probabilities

Context-FreeStochastic

[p]

35/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

X→ λ
1
λ

2
...λ

n

Nonterminal symbols

Terminal symbols

Axiom

Production rules Rule probabilities

Context-FreeStochasticAttributed

[p]

36/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

X→ λ
1
λ

2
...λ

n

Nonterminal symbols

Terminal symbols

Axiom

Production rules Rule probabilities

Rule attributes

Context-FreeStochasticAttributed

[p]

37/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

X→ λ
1
λ

2
...λ

n

Nonterminal symbols

Terminal symbols

Axiom

Production rules Rule probabilities

Rule attributes

Context-FreeStochasticAttributed

[p] { {s
1
s

2
...s

n
},...}

38/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

X→ λ
1
λ

2
...λ

n

Nonterminal symbols

Terminal symbols

Axiom

Production rules Rule probabilities

Rule attributes

Context-FreeStochasticAttributed2-Dimensional

[p] { {s
1
s

2
...s

n
},...}

39/112

What kind of a grammar can we learn?

2D-ASCFG

G = (N, T, S, R, P, A)

X→ λ
1
λ

2
...λ

n

Nonterminal symbols

Terminal symbols

Axiom

Production rules Rule probabilities

Rule attributes

Context-FreeStochasticAttributed2-Dimensional

[p] { {s
1
s

2
...s

n
},...}

H

40/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

41/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

R

42/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR

43/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

44/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

45/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

46/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

47/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:


1
:

48/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:


1
:

49/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2


1
:

50/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2


1
:

51/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2 (0.2)2


1
:

52/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2 (0.2)2


1
:

53/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2 (0.2)2 1.0


1
:

54/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2 (0.2)2 1.0


1
:

55/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2 (0.2)2 1.0

P(
1
)=0.008


1
:

56/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2 (0.2)2 1.0

P(
1
)=0.008


1
:


2
:

57/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2 (0.2)2 1.0

P(
1
)=0.008


1
:


2
:

58/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2

0.8

(0.2)2 1.0

P(
1
)=0.008


1
:


2
:

59/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2

0.8

(0.2)2 1.0

P(
1
)=0.008


1
:


2
:

60/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2

0.8

(0.2)2 1.0

(0.8)2

P(
1
)=0.008


1
:


2
:

61/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2

0.8

(0.2)2 1.0

(0.8)2

P(
1
)=0.008


1
:


2
:

62/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2

0.8

(0.2)2 1.0

(0.8)2 1.0

P(
1
)=0.008


1
:


2
:

63/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2

0.8

(0.2)2 1.0

(0.8)2 1.0

P(
1
)=0.008


1
:


2
:

64/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2

0.8

(0.2)2 1.0

(0.8)2 1.0

P(
1
)=0.008


1
:


2
:

P(

)=0.512

65/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2

0.8

(0.2)2 1.0

(0.8)2 1.0

P(
1
)=0.008


1
:


2
:

L(l|G) = 
l

P() = 0.52Input likelihood:

P(

)=0.512

66/112

A simple parsing example

G = (N, T, S, R, P, A)
N = {S, X, Y}
T = {a}

S XX [0.2] { {0.5,0.5} }→
S XX→ [0.8] { {0.5,0.5} }
X YY [0.8] { {0.5,0.5} }→
X YY [0.2] { {0.5,0.5} }→
Y a [1.0] { {1.0} }→

H
V
H

V
H

PR
A

Input lattice l:

Parsing:

0.2

0.8

(0.2)2 1.0

(0.8)2 1.0

P(
1
)=0.008


1
:


2
:

Viterbi approximation: L(l|G) = max
l

P() = 0.512

L(l|G) = 
l

P() = 0.52Input likelihood:

P(

)=0.512

67/112

Method overview

68/112

Lattice creation

● Approach similar to Riemenschneider et al.
(2012)

● Every rectangular region (tile) is labeled
with the majority vote from the
corresponding pixel labels

69/112

Bayesian model merging

● Data incorporation: given a body of data, build an initial grammar which generates only
the input examples.

● Model merging: propose a candidate grammar by altering the structure of the currently
best grammar.

● Model evaluation: evaluate the fitness of the candidate grammar compared to the
currently best grammar.

● Search: use model merging to explore the grammar space, searching for the optimal
grammar

70/112

Data incorporation

71/112

Nonterminal merging:
Proposing candidate grammars

● Two nonterminals X
1
 and X

2
 are selected from the current grammar and

replaced with a new nonterminal Y

● RHS occurrences are replaced:

● If Z
1
=Z

2
, μ

1
=μ

2
, λ

1
=λ

2
, productions are merged and their attribute sets joined

● LHS occurrences are also replaced:

● Productions of the form Y→Y are removed

● Restriction: X
1
 and X

2
 must be 'label-compatible'

Z
1
→μ

1
X

1
λ

1

Z
2
→μ

2
X

2
λ

2

Z
1
→μ

1
Yλ

1

Z
2
→μ

2
Yλ

2

merge

X
1
→λ

1

X
2
→λ

2

Y→λ
1

Y→λ
2

merge

72/112

Evaluating candidate grammars

● Goal: find the best trade-off between fit to the input data D and a
general preference for simpler models (MDL)

● From a Bayesian perspective:

maximize P(G|D)~P(G)∙P(D|G)

posterior prior likelihood

73/112

Evaluating candidate grammars

Prior term

● Structure prior follows the Minimum Description Length (MDL)
principle

● P(G
s
) = e

● Grammar description length (in bits):

● Parameter prior is a symmetrical Dirichlet

P(G)=P(Gs)∙P(θg|Gs)

Structure prior Parameter prior

DL(Gs)=Σr∈R Σn∈(r∩N)log|N|

­DL(Gs)

74/112

Evaluating candidate grammars

Likelihood term

75/112

Evaluating candidate grammars

Likelihood term

● To calculate the likelihood, one must integrate over the parameter
prior...

● ...or, use the Viterbi assumption:

● Every input sample is generated by a single derivation tree of the
grammar

● The likelihood of that sample is then the product of all rule probabilities
used in the Viterbi derivation

● However, both the Viterbi derivations and the optimal values of rule
probabilities θ

g
 are unknown!

76/112

Evaluating candidate grammars

Likelihood term

● To calculate the likelihood, one must integrate over the parameter
prior...

● ...or, use the Viterbi assumption:

● Every input sample is generated by a single derivation tree of the
grammar

● The likelihood of that sample is then the product of all rule probabilities
used in the Viterbi derivation

● However, both the Viterbi derivations and the optimal values of rule
probabilities θ

g
 are unknown!

77/112

Evaluating candidate grammars

Likelihood term

● To calculate the likelihood, one must integrate over the parameter
prior...

● ...or, use the Viterbi assumption:

● Every input sample is generated by a single derivation tree of the
grammar

● The likelihood of that sample is then the product of all rule probabilities
used in the Viterbi derivation

● However, both the Viterbi derivations and the optimal values of rule
probabilities θ

g
 are unknown!

? (?)2 ?
i
:

P(
i
)=?

78/112

Evaluating candidate grammars

Likelihood term

? (?)2 ?
i
:

P(
i
)=?

79/112

Evaluating candidate grammars

Likelihood term

● Solution: Expectation-Maximization

● E-step: starting from an estimate of θ
g
, calculate the expected usage

counts of each rule

● Find Viterbi derivations of all input data, count the number of times each
rule is used

● M-step: re-estimate the rule probabilities θ
g
:

? (?)2 ?
i
:

P(
i
)=?

80/112

Evaluating candidate grammars

Likelihood term

● Solution: Expectation-Maximization

● E-step: starting from an estimate of θ
g
, calculate the expected usage

counts of each rule

● Find Viterbi derivations of all input data, count the number of times each
rule is used

● M-step: re-estimate the rule probabilities θ
g
:

? (?)2 ?
i
:

P(
i
)=?

81/112

Evaluating candidate grammars

Likelihood term

● Solution: Expectation-Maximization

● E-step: starting from an estimate of θ
g
, calculate the expected usage

counts of each rule

● Find Viterbi derivations of all input data, count the number of times each
rule is used

● M-step: re-estimate the rule probabilities θ
g
:

? (?)2 ?
i
:

P(
i
)=?

82/112

Evaluating candidate grammars

Likelihood term

● Solution: Expectation-Maximization

● E-step: starting from an estimate of θ
g
, calculate the expected usage

counts of each rule

● Find Viterbi derivations of all input data, count the number of times each
rule is used

● M-step: re-estimate the rule probabilities θ
g
:

? (?)2 ?
i
:

P(
i
)=?

83/112

Evaluating candidate grammars

2D Earley parsing

? (?)2 ?
i
:

P(
i
)=?

84/112

Evaluating candidate grammars

2D Earley parsing

● How to find the Viterbi derivations in the E-step?

● Generalizing the Earley's string parser (Earley, 1970) to 2D
● Top-down parsing algorithm

● Worst-case complexity is O(n3), but usually performs better

● e.g. O(n2) for unambiguous grammars

● Does not require the grammar to be in CNF

● Calculation of Viterbi probabilities with the extension of (Stolcke, 1994)

? (?)2 ?
i
:

P(
i
)=?

85/112

Evaluating candidate grammars

2D Earley parsing

● How to find the Viterbi derivations in the E-step?

● Generalizing the Earley's string parser (Earley, 1970) to 2D
● Top-down parsing algorithm

● Worst-case complexity is O(n3), but usually performs better

● e.g. O(n2) for unambiguous grammars

● Does not require the grammar to be in CNF

● Calculation of Viterbi probabilities with the extension of (Stolcke, 1994)

? (?)2 ?
i
:

P(
i
)=?

A. Martinović and L. Van Gool. Earley parsing for 2D stochastic context free grammars.
Technical Report KUL/ESAT/PSI/1301, KU Leuven, 2013.

86/112

Search in model space

● Posterior calculation is modified using a global prior weight w

● Minimizing the energy

● w small: low generalization, search procedure stops earlier

● w large: increasing the tendency to generalize beyond data

● Greedy best-first search
● In each iteration, every pair of nonterminals is considered for merging

● All candidate grammars are evaluated

● The candidate grammar with minimum energy is accepted if this energy is lower than the
current grammar's

● The rule probabilities are learned in each step using the EM procedure

E(G|D) = ­ w log P(G) – log P (D|G)

87/112

Obtaining the final model

● Casting the induced grammar back to image space

1. Sequences of the same nonterminal symbol are collapsed, e.g.

2. For every rule , we fit a (k­1)-variate Gaussian
distribution to the set of its attributes

● This enables us to sample productions with continuous attributes in
image space

X→λYYμ {{s
1
,y

1
,y

2
,s

2
}} X→λYμ {{s

1
,y

1
+y

2
,s

2
}}

collapse

88/112

Parsing in image space

● Find the grammar derivation δ which
optimally describes the image

● Optimization is difficult:

1. Rule attributes can have continuous values

● Solution: Markov Chain Monte Carlo (MCMC) reduces optimization to sampling

2. Grammar is stochastic, the number of rules per derivation can change
● Solution: Reversible jump MCMC (rjMCMC)

● Posterior of a derivation δ given an image I:

Likelihood

Rule term Attribute term

Prior

89/112

Parsing in image space

Likelihood

Rule term Attribute term

Prior

90/112

Parsing in image space

● Boltzmann's transformation:

● Rule term: sum of negative log probabilities of all rules in derivation δ

● Attribute term: discrepancy between proposed and expected attributes

● Image term: discrepancy between Random Forest pixel classifier and
labeling induced by terminal nodes in δ

Likelihood

Rule term Attribute term

Prior

91/112

Parsing in image space

● Boltzmann's transformation:

● Rule term: sum of negative log probabilities of all rules in derivation δ

● Attribute term: discrepancy between proposed and expected attributes

● Image term: discrepancy between Random Forest pixel classifier and
labeling induced by terminal nodes in δ

Likelihood

Rule term Attribute term

Prior

92/112

Parsing in image space

● Boltzmann's transformation:

● Rule term: sum of negative log probabilities of all rules in derivation δ

● Attribute term: discrepancy between proposed and expected attributes

● Image term: discrepancy between Random Forest pixel classifier and
labeling induced by terminal nodes in δ

Likelihood

Rule term Attribute term

Prior

93/112

Parsing in image space

● Boltzmann's transformation:

● Rule term: sum of negative log probabilities of all rules in derivation δ

● Attribute term: discrepancy between proposed and expected attributes

● Image term: discrepancy between Random Forest pixel classifier and
labeling induced by terminal nodes in δ

Likelihood

Rule term Attribute term

Prior

94/112

Parsing in image space

● Boltzmann's transformation:

● Rule term: sum of negative log probabilities of all rules in derivation δ

● Attribute term: discrepancy between proposed and expected attributes

● Image term: discrepancy between Random Forest pixel classifier and
labeling induced by terminal nodes in δ

Likelihood

Rule term Attribute term

Prior

95/112

Parsing in image space

● Boltzmann's transformation:

● Rule term: sum of negative log probabilities of all rules in derivation δ

● Attribute term: discrepancy between proposed and expected attributes

● Image term: discrepancy between Random Forest pixel classifier and
labeling induced by terminal nodes in δ

Likelihood

Rule term Attribute term

Prior

96/112

Parsing in image space

● Boltzmann's transformation:

● Rule term: sum of negative log probabilities of all rules in derivation δ

● Attribute term: discrepancy between proposed and expected attributes

● Image term: discrepancy between Random Forest pixel classifier and
labeling induced by terminal nodes in δ

Likelihood

Rule term Attribute term

Prior

97/112

Parsing in image space

● Boltzmann's transformation:

● Rule term: sum of negative log probabilities of all rules in derivation δ

● Attribute term: discrepancy between proposed and expected attributes

● Image term: discrepancy between Random Forest pixel classifier and
labeling induced by terminal nodes in δ

Likelihood

Rule term Attribute term

Prior

98/112

Parsing in image space

● Boltzmann's transformation:

● Rule term: sum of negative log probabilities of all rules in derivation δ

● Attribute term: discrepancy between proposed and expected attributes

● Image term: discrepancy between Random Forest pixel classifier and
labeling induced by terminal nodes in δ

Likelihood

Rule term Attribute term

Prior

99/112

Parsing in image space - rjMCMC

100/112

Parsing in image space - rjMCMC

● rjMCMC with Metropolis-Hastings update

● Markov chain is initialized with a random derivation

● Two possible moves in every iteration:

● Diffusion move – parse tree doesn't change, dimensionality of α is preserved

● Jump move – a rule in the tree is resampled, dimensionality of α changes

● Improvements:

● Parallel tempering – 8 chains are run in parallel on different cooling schedules

● Delayed rejection – a jump move is always followed by a diffusion move, and
the moves are accepted or rejected in unison

101/112

Parsing in image space - rjMCMC

● rjMCMC with Metropolis-Hastings update

● Markov chain is initialized with a random derivation

● Two possible moves in every iteration:

● Diffusion move – parse tree doesn't change, dimensionality of α is preserved

● Jump move – a rule in the tree is resampled, dimensionality of α changes

● Improvements:

● Parallel tempering – 8 chains are run in parallel on different cooling schedules

● Delayed rejection – a jump move is always followed by a diffusion move, and
the moves are accepted or rejected in unison

102/112

Parsing in image space - rjMCMC

● rjMCMC with Metropolis-Hastings update

● Markov chain is initialized with a random derivation

● Two possible moves in every iteration:

● Diffusion move – parse tree doesn't change, dimensionality of α is preserved

● Jump move – a rule in the tree is resampled, dimensionality of α changes

● Improvements:

● Parallel tempering – 8 chains are run in parallel on different cooling schedules

● Delayed rejection – a jump move is always followed by a diffusion move, and
the moves are accepted or rejected in unison

δ=(τ,α)

Parse tree “Parameter vector”
Concatenated attributes
in a pre-order traversal of τ

103/112

Parsing in image space - rjMCMC

● rjMCMC with Metropolis-Hastings update

● Markov chain is initialized with a random derivation

● Two possible moves in every iteration:

● Diffusion move – parse tree doesn't change, dimensionality of α is preserved

● Jump move – a rule in the tree is resampled, dimensionality of α changes

● Improvements:

● Parallel tempering – 8 chains are run in parallel on different cooling schedules

● Delayed rejection – a jump move is always followed by a diffusion move, and
the moves are accepted or rejected in unison

δ=(τ,α)

Parse tree “Parameter vector”
Concatenated attributes
in a pre-order traversal of τ

104/112

Parsing in image space - rjMCMC

● rjMCMC with Metropolis-Hastings update

● Markov chain is initialized with a random derivation

● Two possible moves in every iteration:

● Diffusion move – parse tree doesn't change, dimensionality of α is preserved

● Jump move – a rule in the tree is resampled, dimensionality of α changes

● Improvements:

● Parallel tempering – 8 chains are run in parallel on different cooling schedules

● Delayed rejection – a jump move is always followed by a diffusion move, and
the moves are accepted or rejected in unison

δ=(τ,α)

Parse tree “Parameter vector”
Concatenated attributes
in a pre-order traversal of τ

105/112

rjMCMC diffusion move

● Select a random node hk in the derivation tree

● Sample from a Gaussian proposal distribution centered
on the current parameters

Acceptance probability of the move

106/112

rjMCMC jump move

● A random node h is selected in the derivation tree

● A new rule is sampled from all rules applicable to selected LHS

● If RHS has different length, the whole subtree rooted on h is re-derived

● Topology of τ changes

● Dimensionality of α changes

Acceptance probability of the move

Probability of choosing
a nonterminal h in tree τ

Image and attribute
terms

107/112

Parsing results

● ECP dataset

● Example: fold 1

108/112

Parsing results

● Quantitative analysis

109/112

Generating novel designs

110/112

Generating novel designs

w=1.0 w=0.3

● The effect of prior weight w on grammar generalization

111/112

Future work

● State of the art in facade parsing

● Images → Labelings

● This paper

● Labelings → Grammar

● Combine the two approaches

● “Facade bootstrapping”

A. Martinović, M. Mathias, J. Weissenberg, and L. Van
Gool. A three-layered approach to facade parsing. In
ECCV, 2012

112/112

Thank you

	Slide 1
	Slide 2
	page3 (1)
	page3 (2)
	page3 (3)
	page3 (4)
	Slide 7
	Slide 8
	Slide 9
	page7 (1)
	page7 (2)
	page7 (3)
	page7 (4)
	page7 (5)
	page7 (6)
	page7 (7)
	page7 (8)
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	page14 (1)
	page14 (2)
	page14 (3)
	page14 (4)
	page14 (5)
	page14 (6)
	page14 (7)
	page14 (8)
	page14 (9)
	page14 (10)
	page14 (11)
	page14 (12)
	page14 (13)
	page14 (14)
	page14 (15)
	page14 (16)
	page15 (1)
	page15 (2)
	page15 (3)
	page15 (4)
	page15 (5)
	page15 (6)
	page15 (7)
	page15 (8)
	page15 (9)
	page15 (10)
	page15 (11)
	page15 (12)
	page15 (13)
	page15 (14)
	page15 (15)
	page15 (16)
	page15 (17)
	page15 (18)
	page15 (19)
	page15 (20)
	page15 (21)
	page15 (22)
	page15 (23)
	page15 (24)
	page15 (25)
	page15 (26)
	page15 (27)
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	page23 (1)
	page23 (2)
	page23 (3)
	page23 (4)
	page24 (1)
	page24 (2)
	page24 (3)
	page24 (4)
	page24 (5)
	page25 (1)
	page25 (2)
	page25 (3)
	Slide 86
	Slide 87
	Slide 88
	page29 (1)
	page29 (2)
	page29 (3)
	page29 (4)
	page29 (5)
	page29 (6)
	page29 (7)
	page29 (8)
	page29 (9)
	page29 (10)
	page30 (1)
	page30 (2)
	page30 (3)
	page30 (4)
	page30 (5)
	page30 (6)
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

