

Introduction

Shape grammars are a powerful tool for synthesizing novel building designs and reconstructing existing buildings. So far, a human expert was required to write grammars for specific building styles. We present an approach to automatically learn procedural split grammars from labeled building facades. The learned grammar can be used to:

- **Create** novel instances of the same building style
- 2. Parse existing facade imagery, outperforming bottom-u on-par with approaches that use a manually designed gra

Data incorporation

Create a stochastic grammar that generates only the input lattices:

$\begin{array}{c} G_{1} \\ S_{1} \stackrel{\vee}{\rightarrow} X_{1} X_{2} X_{a} [1.0] \{\{h_{1}, h_{2} h_{a}\}\} \\ X_{1} \stackrel{\leftrightarrow}{\rightarrow} X_{11} X_{12} X_{1b} [1.0] \{\{w_{11}, w_{12} w_{1b}\}\} \\ X_{2} \stackrel{\leftrightarrow}{\rightarrow} X_{21} X_{22} X_{2c} [1.0] \{\{w_{21}, w_{22} w_{2c}\}\} \\ \\ X_{m} \stackrel{\leftrightarrow}{\rightarrow} window [1.0] \{\{1\}\} \\ X_{n} \stackrel{\leftrightarrow}{\rightarrow} balcony [1.0] \{\{1\}\} \end{array}$			$\begin{array}{c} G_{0} \\ S_{0} \xrightarrow{H} S_{1} & [1/n_{f}] \{ \{ 1 \} \} \\ S_{0} \xrightarrow{H} S_{2} & [1/n_{f}] \{ \{ 1 \} \} \\ \\ \vdots \\ S_{0} \xrightarrow{H} S_{n_{f}} & [1/n_{f}] \{ \{ 1 \} \} \end{array}$
--	--	--	--

Bayesian Grammar Learning for Inverse Procedural Modeling Anđelo Martinović¹, Luc Van Gool^{1,2} ¹ESAT/PSI/VISICS, KU Leuven ²Computer Vision Lab, ETH Zurich

Bayesian model merging

 $P(G) = P(G_s)P(\theta_q|G_s)$

Search for the grammar model that yields the best trade-off between the fit to the input data and a general preference for simpler models [2]

Likelihood

$minimize \ E(G|D) = -w \log P$

Structure prior

MDL principleParameter prior
Symmetrical Dirichlet
$$\hat{P}(X \to \lambda) = \frac{\hat{c}(X \to \lambda)}{\sum_{\mu} \hat{c}(X \to \mu)}$$
 $\hat{P}(X \to \lambda) = \frac{\hat{c}(X \to \lambda)}{\sum_{\mu} \hat{c}(X \to \mu)}$ $\hat{P}(X \to \lambda) = \frac{\hat{c}(X \to \lambda)}{\sum_{\mu} \hat{c}(X \to \mu)}$ Search in model spaceModel merging $CurrentGrammar \leftarrow InitialGrammar$
while 1 do $X_1 \to \mu_1 X_1 \lambda_1$
 $I Candidates \leftarrow Argmin(E(Candidates)))$ $f E(BestCandidate \leftarrow Argmin(E(Candidates)))$ $I CurrentGrammar \leftarrow BestCandidate$
 $I CurrentGrammar \leftarrow BestCandidate$ $I CurrentGrammar \leftarrow BestCandidate$
 $I CurrentGrammar \leftarrow BestCandidate$ $X_1 \to \lambda_1$
 $I \to X_2$ $X_2 \to \lambda_2$ Y

Final model creation

Collapse sequences of the same non-terminal symbol in a production to a single symbol with correspondingly modified attributes:

$$X \to \lambda Y Y \mu$$
 $collapse$ $X \to \lambda Y \mu$

$$A = \{\{s_1, y_1, y_2, s_2\}\}$$

For every production $p = (X \to \lambda_1 \dots \lambda_k)$, fit a (k-1)-variate Gaussian distribution $\phi(A) = \mathcal{N}(\bar{\mu}, \hat{\Sigma})$ to the set of its attributes $A(p) = \{\alpha_1 \dots \alpha_n\}$

$$\bar{\mu} = \frac{1}{n} \sum_{j=1}^{n} \alpha_{j}$$

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{j=1}^{n} (\alpha_{j} - \bar{\mu}) (\alpha_{j} - \bar{\mu})^{T}$$

$$\boxed{\begin{array}{c|c} \text{Initial grammar} \\ |N| & 126.8 \pm 6.5 \\ |R_{h}| & 121.8 \pm 6.5 \\ |R_{v}| & 33 \pm 0.6 \\ \end{array}}$$

$$P(G) - \log P(D|G)$$

• ML estimate of $P(D|G_s)$ using Viterbi assumption • Input data parsed using 2D Earley parser [1] • Optimal values of θ_a estimated using EM

$\mu_1 X_1 \lambda_1$	merge →	$Z_1 \to \mu_1 Y \lambda_1$
$\mu_2 X_2 \lambda_2$		$Z_2 \to \mu_2 Y \lambda_2$
$X_1 \to \lambda_1$	merge →	$Y \to \lambda_1$
$X_2 \to \lambda_2$		$Y \to \lambda_2$

_ _ _ _ _ _ _ _ _ _ _ _ _

 $A = \{\{s_1, y_1 + y_2, s_2\}\}$

Grammar size

l	Induced,	Induced,
G_0	w = 0.3	w = 1.0
6.61	26.6 ± 0.89	14 ± 0.0
6.61	65 ± 6.70	27.8 ± 2.68
0	15.6 ± 2.60	11 ± 1.41

Image space parsing
Similar to [3], find the optimal
energy defined as:
$E(\delta I) = -\sum_{s \in \delta} \log P(r_s) - \sum_{s \in \delta}$
$s \in 0$ $s \in 0$
$E_{\delta} = E_{\delta}^{nuc} + E_{\delta}^{ucrouve} + $
Penalize low Penalize deviations
rules attributes
$\begin{array}{l} \text{Diffusion move} \\ \rho_{\delta \rightarrow \delta'} = min\{1, \frac{p(\delta' I)}{p(\delta I)}\} = r \end{array}$

 $\rho_{\delta \to \delta'} = \min\{1, \frac{q_{\tau'}(h)}{q_{\tau}(h)}e^{-[(F)]}\}$ Jump move

Results

Class	RF [4]	$\mathbf{RL}[5]$
Window	29	62
Wall	58	82
Balcony	35	58
Door	79	47
Roof	51	66
Sky	73	95
Shop	20	88
Overall	48.55	74.71

All of the above methods use pixel-based bottom-up information.

Sampling novel buildings

Samples from the Baves-optimal gramma

High prior weight

References

[1] A. Martinović and L. Van Gool. Earley parsing for 2D stochastic context free grammars. Technical Report KUL/ESAT/PSI/1301, KU Leuven, 2013. [2] A. Stolcke. Bayesian Learning of Probabilistic Language Models. PhD thesis, UC Berkeley, 1994.

[3] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Mech, and V. Koltun. Metropolis procedural modeling. In SIGGRAPH, 30(2), 2011. [4] O. Teboul, L. Simon, P. Koutsourakis, and N. Paragios. Segmentation of building facades using procedural shape priors. In CVPR, 2010. [5] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and N. Paragios. Shape grammar parsing via reinforcement learning. In CVPR, 2011.

derivation using rjMCMC with the chain

$\log \phi(A(r_s)) - \log P(I|\delta)$

$$\begin{split} E_{\delta}^{image} \\ \text{Random Forest pixel classifier} \\ E^{image} &= \sum_{t \in \delta} \sum_{x_i \in t} -\log P_{RF}(l_t | x_i) \\ min\{1, e^{-(E_{\delta'} - E_{\delta})}\} \end{split}$$

$$Z_{\delta'}^{img} + E_{\delta'}^{attr}) - (E_{\delta}^{img} + E_{\delta}^{attr})] \Big\}$$

