
Hierarchical Co-Segmentation of Building Facades

And̄elo Martinović and Luc Van Gool
ESAT-PSI/VISICS, KU Leuven

andelo.martinovic@esat.kuleuven.be, luc.vangool@esat.kuleuven.be

Abstract

We introduce a new system for automatic discovery of
high-level structural representations of building facades.
Under the assumption that each facade can be represented
as a hierarchy of rectilinear subdivisions, our goal is to find
the optimal direction of splitting, along with the number and
positions of the split lines at each level of the tree. Unlike
previous approaches, where each facade is analysed in iso-
lation, we propose a joint analysis of a set of facade im-
ages. Initially, a co-segmentation approach is used to pro-
duce consistent decompositions across all facade images.
Afterwards, a clustering step identifies semantically similar
segments. Each cluster of similar segments is then used as
the input for the joint segmentation in the next level of the
hierarchy. We show that our approach produces consistent
hierarchical segmentations on two different facade datasets.
Furthermore, we argue that the discovered hierarchies cap-
ture essential structural information, which is demonstrated
on the tasks of facade retrieval and virtual facade synthesis.

1. Introduction
In the field of 3D city modeling, accurate reconstructions

of buildings are essential when creating realistic models of
urban spaces. Simple plane fitting and texturing is typi-
cally insufficient for an immersive, realistic user experience
as errors often show up during unrestricted user movement
through the reconstructed urban areas. Due to the fact that
facades are the most prominent parts of buildings, modeling
their structure has received considerable attention in the re-
search community, resulting a wide spectrum of approaches
tackling the problem of facade structure understanding.

On one side of this spectrum, model-based techniques
encapsulate prior knowledge about the building structure
as a set of rules, most commonly using shape grammars
for architecture, popularised by [10]. These methods con-
strain the final reconstruction to be an instance of the pre-

This work was supported by the KU Leuven Research Fund and the
European Research Council (ERC) under the project VarCity (#273940).

Figure 1. (Best viewed in color) An example hierarchical joint seg-
mentation of two facade images. Solid lines represent the hierar-
chical decomposition. Dashed lines indicate which segments are
used in a joint segmentation. For example, one joint segmentation
is performed for the initial facades, and one for segments {ai∪bi}.

defined model, which creates accurate and visually pleas-
ing results [18]. However, their downside is the reliance on
a style-specific model which may not be readily available
when dealing with different architectural styles.

In contrast, model-free techniques for facade parsing are
typically based on supervised semantic segmentation ap-
proaches [8, 3, 2]. Although these methods provide impres-
sive performance when pixel accuracy is concerned, their
output is limited to a flat, 2-dimensional labeling of the in-
put image. However, as many other man-made objects, fa-
cades exhibit a strong hierarchical structure, which cannot
be captured by a flat segmentation approach.

Therefore, some authors have proposed to learn facade
structure from data. Muller et al. [11] estimates a regular
grid of facade elements and converts it into a shape gram-
mar. Shen et al. [15] extends this approach by modeling
multiple interlaced grids. Other facade structure learning

1

methods either depend on user interaction [12, 1, 7] or pre-
defined abstractions of the input facades in form of labeled
boxes [23] or pixelwise annotations [9, 21].

In this work, we propose to merge the gap between the
supervised facade parsing techniques, which produce im-
perfect labelings, and the structured learning approaches
that require clean data to work. Due to the existence of noise
in the data, we argue that the structure cannot be reliably es-
timated from a single facade image, and thus propose a joint
optimization of a set of facade images. We create consistent
hierarchies by performing a joint segmentation of facades
and their parts recursively, see Fig. 1 for an illustration. The
joint segmentation at each level is performed using a modi-
fied linear programming technique originally introduced in
[6] for 3D shape segmentation.

The two approaches most similar to ours are the works
of Shen et al. [15] and Van Kaick et al. [19]. In the first
approach, a hierarchy is created for each facade indepen-
dently, resulting in less stable hierarchies with no corre-
spondence across images. In the second approach, co-
analysis is performed on a set of 3D shapes, but with the
key difference that the hierarchies are first created indepen-
dently for each shape and subsequently merged. Further-
more, they are limited to an analysis of binary trees, while
our approach allows us to create n-ary trees from the outset.

2. Our approach
We start with a set of N facade images F and their noisy

semantic segmentations (labelings) L. We obtain the lat-
ter by running the first two layers of [8], which provide la-
beling results with the highest pixel accuracy, without in-
troducing any explicit architectural knowledge. Other ap-
proaches for semantic segmentation could also be used,
such as [3, 2]. Our main assumption is that the facades fol-
low the Manhattan-world assumption, and can be decom-
posed by recursive splitting in the vertical and horizontal
direction. This is a common assumption used by a large
number of previous works in urban modeling [22, 15, 3, 18]
which does not preclude the existence of non-rectangular
elements (e.g. round windows) since they can still be repre-
sented with a bounding box. We define a scope z as an axis-
aligned bounding box which contains a non-empty area of
an image and its corresponding labeling. The initial set of
images is thus converted to a set of N scopes Z = {zi},
each scope completely covering one facade image.

At every step of the hierarchy, we want to find the opti-
mal segmentations of all scopes, such that the created seg-
ments are consistent across scopes. Due to the Manhattan
assumption, we can restrict our search by considering only
segments generated by splitting the scope in one of the main
splitting directions. A valid k-way segmentation of a scope
thus consists of k adjacent segments separated by k − 1
splitting lines. A brute-force approach to finding the con-

sistent segmentations would be to consider every possible
combination of split lines in each scope, and selecting the
combination which maximizes some predefined consistency
score. Since this would be too computationally expensive,
we reduce the dimensionality of the problem by limiting
the number of allowed split line positions. This is done by
first generating an oversegmentation of each scope into a
large number of smaller segments, or slices, and constrain-
ing each segment to be a superset of contiguous slices (see
Fig. 2). This idea is similar to using superpixels [13] in
general image segmentation, or patches in shape segmenta-
tion [6]. The optimal subsets of segments for each scope
are then selected by a modified co-segmentation approach
of [6], detailed in Sec. 4. Then, a hierarchical decomposi-
tion is created with a recursive approach detailed in Sec. 5.
Similar segments across scopes are discovered in a graph
clustering step. All segments in one cluster are used as the
input to the joint segmentation stage in the next level of the
hierarchy. The process continues until the produced clusters
contain uniform elements (e.g. wall regions) or elements
too small for subdivision. In Sec. 6 we show that the result-
ing hierarchies can be used for structural facade retrieval
and sampling of virtual facades. Our contributions are as
follows: (1) A novel approach for creating consistent hier-
archical decompositions of building facades. To the best of
our knowledge, we are the first to use a co-segmentation ap-
proach in this context; (2) A graph clustering approach for
automatic discovery of semantically similar elements across
images; (3) A new tree distance measure for comparing n-
ary trees based on sequence matching.

3. Initial segmentation

In order to generate an oversegmentation of a scope, we
define a support function for placing a split line at each po-
sition in the scope:

Υ(z) = ΥIG(Fz) ·ΥIC(Fz) ·ΥLB(Lz) ·ΥLC(Lz) (1)

This function aggregates the data support from both the
original image and the noisy labeling through the follow-
ing four factors, normalized to the interval [0, 1]:
Image gradient support ΥIG [15, 3] promotes placing of
horizontal (vertical) split lines where horizontal (vertical)
edges or gradients are prominent, and vertical (horizontal)
edges are rare.
Image content support ΥIC [3] proposes split line posi-
tions based on the inverse of the normalized cut between
the two created parts of the image.
Label border support ΥLB uses the semantic information
from the labeling to penalize lines which split facade ele-
ments such as windows, doors and balconies.
Label content support ΥLC : same as ΥIC , but defined
over the labeled image.

Figure 2. A single image-labeling pair (a) is oversegmented into a
large number of slices (b). Randomized segmentations (c) with a
varying number of segments create the initial pool of segments.

The next step is to create an oversegmentation of a scope
into a predefined number of slices. We are looking for at
most K split lines (30 in our experiments), corresponding
to peaks in the data support function, which split the scope
into K + 1 slices.

A peak in a vector is defined as a position where the vec-
tor has a higher value than its neighbors, and is preceded by
a value lower than a threshold τ . By setting τ to a very low
value, we initially detect a large number of peaks, most of
them affected by the noise in the support function. How-
ever, we can smooth the support function by convolving it
with a Gaussian window, thus reducing the total amount of
detected peaks. The peak detection problem is now posed
as the search for the best Gaussian window which produces
a number of peaks as close as possible to K.

We solve this problem using binary search, setting the
initial lower and upper bound on the Gaussian window size
to γl = 1 and γu = |Υ(z)| respectively. In each step, we
convolve the support function with the Gaussian window of
size γm = (γu+γl)/2. If we detect more peaks thanK−1,
the search is continued by setting γl = γm. If the number
of peaks is smaller, we set γu = γm. The algorithm finishes
when γl = γu or the number of generated peaks is equal to
K. The result of this step is a set of K + 1 slices Cz , and
K splitting lines lz , for each scope z. The support function
evaluated at the splitting line positions Υ(z, lj) gives us the
strength of each split line, which we use to group the slices
into segments.

3.1. Segment proposals

Similar to [6], from a set of slices Cz , we generate many
proposal segmentations by varying the number of target
segments k from 1 to 20, and running 250 rounds of ran-
domized segmentations for each k. In each round, we per-
form k-medoid clustering of slices, following the EM pat-
tern. We initialize the algorithm by uniformly sampling k
slices as cluster centers. In the M-step, every slice ci ∈ Cz

is assigned to the closest cluster center cm, based on the dis-
tance between two slices δ(c1, c2). We define this distance
as the maximum of all split line strengths Υ between two
slices, which penalizes the creation of segments which span
strong split lines. If there is another cluster center c′m be-
tween c and cm, the distance δ(c, cm) is set to infinity. This

forces the segmentation to contain only contiguous clusters
of slices. In the E-step, the medoids are estimated from the
cluster members, by minimizing the sum of distances be-
tween elements in one cluster.

Typically, many segments generated in this fashion will
appear in more than one randomized segmentation. Seg-
ments that are generated the most often are the ones most
useful to us, being less sensitive to randomization and the
selected number of target segments. Therefore, we weight
each unique segment s by the number of times it appears
over all randomized segmentations of a single scope, i.e.
the frequency of appearance is used as the fitness score ws
of the segment. This simple weighting scheme proved to
be sufficient for the task, as we did not observe any im-
provement by using the more elaborate weighting scheme
from [6]. Finally, to reduce the total amount of segments
for the subsequent optimization procedure, for each scope
we retain n = 100 segments with the highest weight as the
set of proposals Iz , making sure that it contains at least one
complete segmentation of the scope.

We represent each segment s with a vector h(s) which is
a concatenation of two types of features:
Label features hl(s). Histogram of labels from the entire
segment and from each of its 2x2 subdivisions. The result-
ing feature vector captures the coarse distribution of labels.
Image features hi(s). Histogram of visual words. Dense
SIFT features are extracted from all images, followed by
K-means clustering into a codebook of 256 visual words.

Finally, to measure the dissimilarity between two seg-
ments, we introduce a distance measure based on the his-
togram intersection between the feature vectors:

d(s, s′) = 1−
∑
imin(hi(s),hi(s

′))∑
i hi(s

′)
(2)

4. Co-segmentation
The purpose of the co-segmentation step is to find the

best subset of segments for each scope, such that they are
salient in each scope and consistent across scopes. We fol-
low the same basic algorithm which was introduced for joint
segmentation of 3D shapes [6]. In this section, we summa-
rize the basic algorithm, with emphasis on the main differ-
ences introduced in our work.

4.1. Pairwise co-segmentation

Given two scopes z1 and z2 and their corresponding
sets of proposal segments I1 and I2, the pairwise co-
segmentation searches for the best valid subsets of segments
S1 ⊆ I1 and S2 ⊆ I2, by maximizing both the quality of in-
dividual segmentations, and the consistency between them.
A subset of segments is considered valid only if the selected
segments cover the entire scope without overlapping. The
consistency between two scopes is modeled through two

many-to-one mappings Mij ⊂ Si × Sj , from segments in
S1 to segments in S2, and vice versa. The many-to-one
mappings allow us to match scopes with different amount
of corresponding parts. Thus, each segment in one scope
will be mapped to at most one segment in the other scope.
The maximization can be written as

max
S1,S2,M12,M21

∑
s∈S1∪S2

rsws + λ
∑

(s,s′)∈{M12,M21}

rsw(s,s′) (3)

where the parameter λ (0.1 in our experiments) weighs the
relative importance of the segmentation (left) and consis-
tency scores (right). The segmentation score is a normal-
ized sum of segment weights ws, defined in Sec. 3.1. The
normalization factor is the relative size of the segment s in
the scope z: rs = area(s)/area(z).

The consistency term is a normalized sum of similarity
weights between all segment pairs (s, s′) induced by each
of the two mappings. The similarity is determined based on
the distance measure d between two segments (Sec. 3.1):

w(s,s′) = exp

(
−d

2(s, s′)

2σ2

)
(4)

In our experiments, σ is set to half the maximum distance
between all pairs of most similar segments.

4.1.1 Integer programming formulation

The maximization problem from Eq. 3 can be reformulated
as an integer program [6]. For for every segment s ∈ Ii,
an indicator variable xs is introduced, and defined to be
xs = 1 when the segment is selected, and 0 otherwise. Ad-
ditionally, for every pair of segments (s, s′) ∈ Ii × Ij , the
indicator variable y(s,s′) is defined to be 1 when this pair is
selected in the mapping Mij . The objective function from
Eq. 3 is then reformulated as follows:

max
∑

i∈{1,2}

xTi wseg
i + λ

∑
ij∈{12,21}

yTijw
cor
ij (5)

where xi and wseg
i represent all segment indicators in Ii

and their normalized weights. Likewise, yij is a binary
vector of all pair indicators in Ii × Ij , and wcor

ij are their
normalized similarity weights. The first set of constraints in
the integer program states that the selected segments must
cover the entire scope zi, without overlapping:∑

s∈cover(c)

xs = 1 ∀c ∈ Czi (6)

where cover(c) is the set of all segments that contain slice
c. Secondly, each segment of Ii can map to at most one
segment in Ij , which itself has to be selected:∑

s′∈Ij

y(s,s′) ≤ xs ∀s ∈ Ii (7)

y(s,s′) ≤ xs′ ∀(s, s′) ∈ Ii × Ij (8)

The integer problem (IP) is obtained by adding the inte-
grality constraints on the x and y variables. Note that our
program contains 2n + 4n2 integer variables, unlike [6],
where adjacency constraints create 2n4 additional variables.
In our experiments, using the adjacency term did not re-
sult in any noticeable improvement. Another difference is
that we solve the IP by relaxing the integrality constraints
only on the y variables, resulting in a mixed-integer lin-
ear program (MILP) with 2n integrality constraints. This
approach gives us a tighter bound on the IP solution than
we would obtain by relaxing all variables. Although the
worst-case complexity of this MILP is O(22n), in practice
the constraints (7) and (8) allow for a quick convergence of
branch-and-cut methods, such as the MOSEK MILP solver
in the CVX software package [5]. For n = 100, the opti-
mal solution is usually reached within a few seconds on an
8-core machine. The fractional y variables are subsequently
rounded to the closest integer, respecting the constraints.

Segment filtering. After the optimization in Eq. 5 has
been performed for every pair of scopes, we introduce an
additional filtering step. For each scope, we keep only the
segments that are selected in at least one of the pairwise
optimizations. By discarding the remaining segments, we
reduce the computational burden in the subsequent stages.

4.2. Multiway co-segmentation

A joint segmentation of all scopes is performed by a gen-
eralization of Eq. 5 to N scopes:

max

N∑
i=1

xTi wseg
i +

λ

N − 1

N∑
i=1

N∑
j=1

i 6=j

yTijw
cor
ij (9)

Note that the segment filtering step reduces the size of w
vectors compared to Eq. 5. The resulting optimization is
again solved with CVX, but due to its higher complexity,
we constrain the maximum run-time of the solver to 30 min-
utes. In our experience, this was enough to reach a solution
with a sufficiently small optimality gap. An approximate
block-coordinate procedure as in [6] could be employed to
increase the speed of optimization, but with no optimality
guarantees.

5. Hierarchical co-segmentation

The co-segmentation step results in a flat segmentation
of each scope, with mappings between corresponding seg-
ments in different scopes. The next step is to create a hi-
erarchical decomposition of each facade. The first step to-
wards this goal is finding subsets of semantically identical
elements, which can be segmented jointly in the next step
of the hierarchy.

Figure 3. (Best viewed in color) Hierarchical joint segmentation of facade images: (a) ECP dataset. (b) Gruenderzeit dataset. Each cluster
of similar elements in one level of the hierarchy is represented with the same overlay color, which corresponds to the border color in the
next level. Due to space restrictions, only a subset of the hierarchy is shown.

5.1. Segment clustering

We represent the segments selected in all scopes by the
joint segmentation into one directed, weighted assignment
graph G = (V,E). Each node in the set V corresponds to
a selected segment si, i.e. a segment for which xi = 1. E
is a set of directed edges, where node vi is connected to vj
if the value of the corresponding yij variable is equal to 1.
The weight of each edge eij is defined in Eq. 4.

Our key observation is that the groups of similar ele-
ments will form dense clusters in the graph G. By discov-
ering these clusters, we will also find self-similarities in the
input scopes, a feature not modeled by the joint segmen-
tation itself. Thus, our goal is to determine the groups of
segments which correspond to each other, within and across
scopes. To this end, we run spectral clustering [20] on the
graph G. We calculate the normalized graph Laplacian as
in [16], and use its eigenvalue decomposition to find the
number of clusters κ. Based on the eigengap heuristic, we
sort the eigenvalues λi in ascending order, and pick κ as
argmaxi(λi+1 − λi).

There is a possibility that after the clustering step, two
neighboring segments in a scope are assigned to the same
cluster, e.g. two wall parts next to each other. In these
cases, we simplify the final segmentation by merging those
segments into one. However, this must not be done indis-
criminately, since there are cases when we expect neighbor-
ing segments of the same class (e.g. two floors). We merge
two neighboring segments only if their potential merger has
a small distance d to the remaining segments in the cluster.

5.2. Hierarchy creation

Initially, N segmentation trees are created, each contain-
ing a single root node, corresponding to the whole facade.
After performing the co-segmentation and clustering, every
tree is augmented with κ children nodes, one for each clus-
ter. In Fig. 3 the trees are merged and the same-cluster seg-
ments overlaid with the same color. These segments now
become new sets of scopes for the next level of joint seg-
mentation, performed recursively on each cluster. The re-
cursion stops when either the average scope size in the di-
rection of splitting is smaller than a predefined size, or the
scopes in the set are uniform in appearance.

The direction of splitting for each node in the hierarchy is
determined adaptively. We perform the joint segmentation
in both directions, and select the one which gives a more
consistent joint segmentation, based on the similarity be-
tween a pair of scopes zi and zj [6]:

w(zi, zj) = yTijw
cor
ij + yTjiw

cor
ji , w ∈ [0, 2] (10)

5.3. Segment synchronization

As we go deeper in the hierarchy, the number of scopes
to be jointly segmented increases dramatically (e.g. 20 fa-
cades result in ~80 floors and ~400 windows). We can re-
duce the computational burden for the joint segmentation
steps further down in the hierarchy by making the following
observation: within one cluster, two scopes with a common
parent node are more alike than scopes originating from dif-
ferent parents. Therefore, instead of considering each of

these scopes separately, we perform segment synchroniza-
tion. First, for each set Ψ of same-cluster scopes originating
from the same node, we average their data support func-
tions:

Υavg =
1

|Ψ|
∑
s∈Ψ

Υ(s) (11)

and create a representative scope by averaging the feature
vectors of all scopes in Ψ. This scope replaces all scopes
in Ψ during the joint segmentation. Afterwards, the dis-
covered segment borders are back-projected to the original
scopes.

Fig. 1 illustrates the process of synchronization: floors ai
are synchronized: they originate from the same facade, so
they are segmented in the same way. However, their hierar-
chies are allowed to differ. As can be seen in the next level
of the hierarchy, window tiles in floors ai are synchronized,
but different from the synchronized tiles of floors bi. This
allows us to model local differences, while still correctly
capturing the global correspondence.

6. Results
In this section we show some qualitative results of the

joint hierarchical segmentation, and evaluate the approach
on the task of facade retrieval. Finally, we show how virtual
facade layouts can be generated from the induced hierarchy.

6.1. Experimental setup

The main evaluation of our approach is performed on
the well-established ECP facades dataset [18], containing
104 images of buildings in Paris. Since all facades in this
dataset follow the same Haussmannian architectural style,
it is an ideal candidate for our joint segmentation approach.
We deal with 7 semantic labels in this dataset, namely
{window,wall, balcony, door, roof, sky, shop}. We also
test our approach on a subset of [14], consisting of 30 im-
ages in Gruenderzeit style, annotated with a smaller set of
labels: {window,wall, door}. Since we use the output of
a supervised facade parsing approach [8] as the input to our
approach, we are limited to the analysis of the test set. To
cover the entire ECP dataset, we repeat our experiments 5
times, in each fold using different 20 images as the test set,
and average the results.

6.2. Hierarchical co-segmentation

In Fig. 3 we visualize the results of our approach on a
subset of ECP and Gruenderzeit dataset, respectively. Due
to space limitations, here we show only some nodes in the
hierarchy, while the full results can be found in the supple-
mentary material.

The first row of Fig. 3 (a) shows the consistent first-level
segmentation of the Parisian facades. The coloring corre-
sponds to the different clusters discovered in the data. Our

system has automatically detected 6 clusters of similar ele-
ments, roughly corresponding to the regions of sky, roof and
shop, ledges (red) and two types of floors: regular (green)
and floor with running balcony (purple). The consistent seg-
mentation reveals that running balconies usually appear in
the second and fifth floor, which is one of the distinguishing
properties of Haussmannian architecture. We can also see
that the floors with running balconies are split differently
than the regular floors in the next level of the hierarchy.

In the Gruenderzeit dataset, we can solely separate floors
from the wall regions, since there are only three semantic la-
bels in the annotations. Even in this case, the hierarchical
segmentation produces reasonable results, splitting floors
into window tiles, which are further subdivided into win-
dow and wall regions.

6.3. Facade retrieval

In facade retrieval, a query facade is presented to the sys-
tem. The query is then compared to a set of known facades
based on a pre-defined distance measure. These facades are
then re-ranked based on their distance to the query facade,
and top K ranked facades are returned as output.

In this section, we demonstrate that our hierarchical rep-
resentation of facade structures can be used for retrieval of
structurally similar facades, rather than those similar in lo-
cal appearance. We follow the protocol for facade compar-
ison introduced in [21] for the ECP dataset. The gold stan-
dard distance δGT between two facades is defined as the to-
tal number of architectural changes: number of floors, num-
ber of window columns, position of the running balconies
and doors. For each facade in the set, all other facades
are re-ranked in the ascending order of δGT , and the one
with the smallest distance is kept as the ground-truth near-
est neighbor. Once the ground truth ranking is established,
various retrieval methods are evaluated using the Cumula-
tive Match Characteristic (CMC). This measure counts the
percentage of correctly retrieved results (gold distance near-
est neighbors) in the top-K ranking. When K is equal to
the dataset size, all facades are retrieved, resulting in CMC
value of 1 for any method.

We test the retrieval results with several different meth-
ods, and show the results in Fig. 4. As the first baseline
for facade comparison, we create the histograms of seman-
tic labels in each image, and use the histogram intersec-
tion measure as the distance δL. Second, we use the his-
tograms of dense SIFT features coded into a vocabulary of
256 visual words, to obtain the distance δS . A combined
distance δLS is calculated by concatenating the two afore-
mentioned histograms. Additionally, we evaluate the dis-
tance δJ = 2 − w(zi, zj), measuring the dissimilarity of
scopes in the first-level joint segmentation step (Eq. 10).

In order to test our hierarchical method, we introduce
a new measure for tree distance δT . The distance is de-

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Rank

M
ea

n
ex

pe
ct

ed
ac

cu
ra

cy

Cumulative Match Characteristics

[0.86] δT : Tree distance (depth 3)
[0.86] δT : Tree distance (depth 2)
[0.78] δT : Tree distance (depth 1)
[0.74] δJ : JointSeg
[0.80] δLS : Label+SIFT histogram
[0.78] δL: Label histogram
[0.77] δS : SIFT histogram

Figure 4. Cumulative Match Characteristics (CMC) for different
retrieval methods on the ECP dataset, averaged over 5 folds. Nor-
malized area under curve is shown in square brackets.

fined recursively between two induced hierarchical segmen-
tations h1 and h2 as:

δT (h1, h2) = δN (N1, N2) +
∑

(a1,a2)∈A

r(a1, a2)δT (ha1 , ha2) (12)

where N1 and N2 are the root nodes of the hierarchies, and
the set A contains all pairs of children nodes that belong to
the same cluster. The relative size r of the children normal-
izes the sum on the right-hand side to 1. We evaluate our
tree distance measure δT with varying depth of the hierar-
chy. For example, the tree distance in the first level of the
hierarchy is simply δN .

Finally, we define the node distance δN between the
roots of (sub)hierarchies. We want the distance to be sen-
sitive to the relative order of child nodes. Therefore, we
represent the parent node as a string, where each sym-
bol corresponds to the cluster ID of the child node. We
match these two sequences using the Smith-Waterman al-
gorithm [17], a dynamic-programming approach tradition-
ally used in bioinformatics to align DNA and protein se-
quences. We simply define the cost of assigning one ele-
ment of the sequence to another, and the cost of skipping
an element in the sequence (gap cost). We use a constant
penalty for mismatched symbols, and size-dependent gap
costs, i.e. smaller facade elements are more likely to be
skipped.

The retrieval results are shown in Fig. 4. As expected,
the combination of the label histograms and SIFT features
δLS outperforms either of the stand-alone methods. On the
other hand, using the joint segmentation distance δJ results
in poor performance, due to two main limitations. First,
this distance models only the first level of the hierarchy,

and does not capture finer structural differences. Second,
many-to-one mappings disregard the relative frequency of
elements, information which is not lost in histogram-based
methods. For example, a perfect mapping can be found be-
tween a facade with 10 floors and a facade with 1 floor,
resulting in a low δJ . Our tree distance δT does not suffer
from these issues. Even when using only one level of the
hierarchy, where the only discovered elements are floors,
our distance provides better discriminative power than δJ ,
due to the ordering information. By using the second level
of the hierarchy, we obtain even better results, due to the
correct modeling of window tiles. We do not observe any
significant improvement in retrieval by using the third level,
where the hierarchy models only local differences. It is im-
portant to note, however, that using the deeper levels of the
hierarchy does not degrade the results, even if similarities
not captured by the ground truth are found.

6.4. Facade synthesis

The state-of-the-art methods for facade structure extrac-
tion [9, 21] have shown that procedural split grammars can
be inferred from clean, ground-truth labelings. The gram-
mars can subsequently be used to generate new facades by
changing the parameters of the grammar. Similar to our ap-
proach, these methods split the facades in alternating verti-
cal and horizontal directions, where each split is represented
as one rule in the procedural grammar:

Xα → split(dir){rα1 : bα1 |rα2 : bα2 ...|rαn : bαn} (13)

where Xα represents the root node and dir the direction of
splitting. With bα = {bαi } and rα = {rαi } we denote the
set of children and the vector of their relative sizes.

However, both of the aforementioned methods create the
structural decomposition of each facade separately, and then
attempt to merge the inferred decompositions to obtain a
joint grammar. On the other hand, our joint approach im-
mediately creates consistent trees, albeit noisier due to the
usage of imperfect input data. We create a procedural gram-
mar from the ECP test set by transforming each of the 20
hierarchies into a set of procedural rules, which are then ag-
gregated. In the next step, we perform the same production
rule inference as in [21]. This process merges all similar
rules which have the same form (but different size vectors)
into one. The initial facades are now re-created by selecting
the appropriate size vector rα. New facades in the simi-
lar style can be obtained by fitting a multivariate Gaussian
distribution to the set of size vectors in each rule, and then
sampling from this distribution. Fig. 5 shows some virtual
facade layouts sampled in this fashion. We export these lay-
outs to CityEngine [4] and create 3D buildings by automatic
placement of architectural elements from a 3D library at the
positions defined by the layouts.

Figure 5. Synthesis of virtual facade layouts. The sampled layouts
are represented as procedural split grammars and converted into
3D models with CityEngine.

7. Conclusion
We have introduced a system for higher-level under-

standing of building facades through a joint hierarchical de-
composition approach. Unlike most previous facade struc-
ture learning approaches, which rely on user interaction or
ground truth annotations, we show that facade structure can
be induced even by using noisy inputs. Our key observation
is that consistent hierarchies can be created by performing
a joint segmentation approach on each level of the hierar-
chy. The joint segmentation allows us to produce stable,
consistent segmentations across images, despite the noise
present in the input data. Moreover, the induced hierarchies
are a meaningful semantic representation of the building fa-
cade, which we demonstrate on the task of structural fa-
cade retrieval. We also convert the hierarchies into proce-
dural grammars and use them to sample new facade designs,
which respect the layout of the original facades.

In future work, we plan to further reduce the dependency
on image labelings, and induce structure solely from im-
ages. Furthermore, feedback can be added in the hierarchy
construction, to reduce the effect of error propagation to the
lower levels of the hierarchy. Finally, we will investigate
how to model different kinds of structural decompositions,
such as repetition and symmetry.

References
[1] F. Bao, M. Schwarz, and P. Wonka. Procedural facade varia-

tions from a single layout. ACM Trans.Graph., 32(1), 2013.
2

[2] A. Cohen, A. G. Schwing, and M. Pollefeys. Efficient struc-
tured parsing of facades using dynamic programming. In
CVPR, 2014. 1, 2

[3] D. Dai, M. Prasad, G. Schmitt, and L. Van Gool. Learning
domain knowledge for facade labeling. In ECCV, 2012. 1, 2

[4] Esri. CityEngine. http://www.esri.com/software/cityengine,
2013. 7

[5] M. Grant and S. Boyd. CVX: Matlab software for disciplined
convex programming. http://cvxr.com/cvx, Mar. 2014. 4

[6] Q. Huang, V. Koltun, and L. Guibas. Joint shape seg-
mentation with linear programming. ACM Trans. Graph.,
30(6):125:1–125:12, 2011. 2, 3, 4, 5

[7] J. Lin, D. Cohen-Or, H. R. Zhang, C. Liang, A. Sharf,
O. Deussen, and B. Chen. Structure-preserving retargeting
of irregular 3d architecture. ACM Trans.Graph., 30(6), 2011.
2

[8] A. Martinović, M. Mathias, J. Weissenberg, and L. Van Gool.
A three-layered approach to facade parsing. In ECCV, 2012.
1, 2, 6

[9] A. Martinović and L. Van Gool. Bayesian grammar learning
for inverse procedural modeling. In CVPR, 2013. 2, 7

[10] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool.
Procedural modeling of buildings. In SIGGRAPH, 2006. 1

[11] P. Müller, G. Zeng, P. Wonka, and L. J. V. Gool. Image-
based procedural modeling of facades. ACM Trans. Graph.,
26(3):85, 2007. 1

[12] P. Musialski, M. Wimmer, and P. Wonka. Interactive
coherence-based facade modeling. Computer Graphics Fo-
rum, 31(2pt3):661–670, 2012. 2

[13] X. Ren and J. Malik. Learning a classification model for
segmentation. In ICCV, volume 1, pages 10–17, 2003. 2

[14] H. Riemenschneider, U. Krispel, W. Thaller, M. Donoser,
S. Havemann, D. W. Fellner, and H. Bischof. Irregular lat-
tices for complex shape grammar facade parsing. In CVPR,
2012. 6

[15] C.-H. Shen, S.-S. Huang, H. Fu, and S.-M. Hu. Adaptive
partitioning of urban facades. ACM Trans.Graph., 30(6):184,
2011. 1, 2

[16] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE TPAMI, 22(8):888–905, Aug 2000. 5

[17] T. Smith and M. Waterman. Identification of common
molecular subsequences. Journal of Molecular Biology,
147(1):195–197, 1981. 7

[18] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and
N. Paragios. Parsing facades with shape grammars and rein-
forcement learning. IEEE TPAMI, 35(7):1744–1756, 2013.
1, 2, 6

[19] O. van Kaick, K. Xu, H. Zhang, Y. Wang, S. Sun, A. Shamir,
and D. Cohen-Or. Co-hierarchical analysis of shape struc-
tures. ACM Trans.Graph., 32(4), 2013. 2

[20] U. von Luxburg. A tutorial on spectral clustering. CoRR,
abs/0711.0189, 2007. 5

[21] J. Weissenberg, H. Riemenschneider, M. Prasad, and L. Van
Gool. Is there a procdural logic to architecture? In CVPR,
2013. 2, 6, 7

[22] P. Wonka, M. Wimmer, F. X. Sillion, and W. Ribarsky. In-
stant architecture. SIGGRAPH, 22(3):669–677, 2003. 2

[23] H. Zhang, K. Xu, W. Jiang, J. Lin, D. Cohen-Or, and
B. Chen. Layered analysis of irregular facades via symmetry
maximization. ACM Trans.Graph., 32(4):121:1–13, 2013. 2

