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ABSTRACT:

Procedural modeling has proven to be a very valuable tool in the field of architecture. In the last few years, research has soared to
automatically create procedural models from images. However, current algorithms for this process of inverse procedural modeling rely
on the assumption that the building style is known. So far, the determination of the building style has remained a manual task. In this
paper, we propose an algorithm which automates this process through classification of architectural styles from facade images. Our
classifier first identifies the images containing buildings, then separates individual facades within an image and determines the building
style. This information could then be used to initialize the building reconstruction process. We have trained our classifier to distinguish
between several distinct architectural styles, namely Flemish Renaissance, Haussmannian and Neoclassical. Finally, we demonstrate
our approach on various street-side images.

1 INTRODUCTION

Procedural modeling of architecture describes a building as a se-
ries of rules. Starting from a mere footprint or polyhedral ap-
proximation, finer detail is added when going from rule to rule.
Procedural modeling is quite different from the traditional pro-
duction of textured meshes. Procedural models are compact, se-
mantically structured and can be easily altered and used to gen-
erate photorealistic renderings. Furthermore, they support a wide
range of applications, from detailed landmark or building model-
ing to full-size megalopolis simulations.

Whereas meshes or point clouds can be generated through dedi-
cated mobile mapping campaigns, more precise and visually pleas-
ing models have so far been made manually. It takes several man-
years to accurately model an existing city such as New York or
Paris (e.g. 15 man years for the NY model in the King Kong
movie). An alternative could come from inverse procedural mod-
eling. This process aims to reconstruct a detailed procedural
model of a building from a set of images, or even from a sin-
gle image. Buildings are modeled as an instantiation of a more
generic grammar.

Considering the vast diversity of buildings and their appearances
in images, the underlying optimization problem easily becomes
intractable if the search space of all possible building styles had
to be explored. Thus, all currently available inverse procedu-
ral modeling algorithms narrow down their search by implicitly
assuming an architectural style. (Muller et al., 2007) devel-
oped a method based on the identification of repetitive patterns
of regular facades. (Teboul et al., 2010) optimize the parameters
of an Haussmannian style description. (Vanegas et al., 2010)
reconstruct the building mass model using a Manhattan-World
grammar. In all cases, the style grammar is considered a given.
Whereas for landmarks this may be derived from Wikipedia page
coming with their images (Quack et al., 2008), street-side im-
agery typically does not come with style information, however.

We propose a four-stage method for automatic building classi-
fication based on the architectural style. The style information
can then be used to select the appropriate procedural grammar
for the task of building reconstruction. In this paper, we demon-
strate our approach on three distinct architectural styles: Flemish

Renaissance, Haussmannian, and Neoclassical. Please note that
we use a loose interpretation of these architectural terms, as our
focus is on the categorization of building appearance, not actual
provenance. For example, our Flemish Renaissance dataset also
contains buildings from the Flemish Renaissance Revival style,
which both have similar visual features. We also created a pub-
licly available dataset of facade images spanning the three pre-
sented styles, taken from the cities of Leuven, Antwerp and Brus-
sels, in Belgium.

1.1 Related work

Very little research has been carried out in the field of architec-
tural style identification. (Romer and Plumer, 2010) aims at clas-
sifying buildings belonging to Wilhelminian style from a sim-
plified 3D city model. However, their approach is based on a
few coarse features (building footprint and height), with no im-
age support.

Available image classification systems such as the one of (Bosch
et al., 2008) often distinguish between images whose appearances
are very different. Much focus has been on distinguishing indoor
from outdoor scenes (Payne and Singh, 2005), (Szummer and Pi-
card, 2002). Conversely, facade pictures share many common
features no matter their styles. For instance, colour or edges can-
not be used as cues to classify Haussmannian against Neoclassi-
cal buildings.

To our best knowledge, we are the first to tackle the problem of
image-based architectural style identification. Our system pro-
vides a systematic and comprehensive way of estimating the build-
ing style from a single street-side image, incorporating steps of
scene classification, image rectification, facade splitting and style
classification.

2 SYSTEM OVERVIEW

The overall goal of our work is to model cities from images, taken
with cameras on a mobile mapping van. We therefore look at
the broader problem of selecting images that are useful for the
modeling of buildings. It is likely that a significant number will
not even contain buildings, but trees or only a part of a building.



Figure 1: System overview.

Figure 1 gives an overview over our system. The first step in
the approach is to determine if the image actually contains build-
ing facades (Section 3). If this condition is met, we attempt to
rectify the image (Section 4), as the images of buildings taken
from the street usually contain significant projective distortions.
After the image has been rectified, we still face the problem of
identifying individual buildings in the image. Urban spaces often
consist of long, unbroken building blocks, but the architectural
styles may vary from facade to facade. In Section 5) we use edge
information to find individual building separators. Finally, we ex-
tract features from the individual facades, and use a Naive-Bayes
Nearest-Neighbor classifier to determine the architectural style
of the facade (Section 6). The obtained results are summarized in
Section 7.

3 SCENE CLASSIFICATION

Mobile mapping images come with different content and quality.
There are typically several cameras mounted on a van, with dif-
ferent viewing directions. Therefore, the first step in the process
of building classification consists of winnowing all the collected
images into a set of images that actually contain objects of inter-
est. We want this step to be as fast as possible, due to the fact that
it will have to deal with all images taken. On the other hand, the
algorithm is desired to have good generalization to robustly deal
with novel scenes. It has been shown by (Oliva and Torralba,
2006) that humans have the capability of determine scene type
in less than 200ms. This abstract representation of the scene is
called gist, and has served as a starting point for the development
of numerous algorithms for fast scene classification (Siagian and
Itti, 2007, Oliva and Torralba, 2001). These holistic algorithms
attempt to capture the global scene properties through various
low-level image features. The suitability of different gist-based
approaches for scene categorization is discussed in (Siagian and
Itti, 2008). Therefore, we opt for a gist-based scene classification.

3.1 Scene classes

We want to distinguish between the four most common scene
types in street-side imagery (see Figure 1)

• No buildings - images not containing any buildings. Typical
examples in urban scenarios are parks, gardens and water-
fronts.

• Street - images containing facades captured at a high angle
to the facade planes, occurring when camera orientation co-
incides with street direction.

• Facades - images containing one or more whole facades.

• Building part - images containing only a small part of a fa-
cade, not enough for a complete reconstruction.

Among the listed scene classes, only the “facades” class enables
us to attempt a complete facade reconstruction. The appearance
of the “No building“ class in collected images tells us there’s a
gap in the building block, and that no buildings should be recon-
structed. Similarly, if the image is classified as ”Street“, we can
deduce the existence of a street crossing. Finally, the ”building
part“ class informs us that the building is too large (or the street
too narrow) to be captured in a single image.

3.2 Feature extraction and classification

In our implementation, we use a similar approach to (Torralba et
al., 2003). We use a steerable pyramid of Gabor filters, tuned to
4 scales and 8 orientations. Filter outputs are then averaged on
the 4x4 grid. This produces a feature vector comprising of 512
features. Classification is performed using a Support Vector Ma-
chine (SVM) with a Gaussian radial basis kernel function. The
SVM is trained using a one-versus-all approach.

The scene classification dataset contains 1616 images in total,
split into 4 classes of 404 images. Apart from using our own im-
ages from Leuven and Antwerp, we extracted additional images
from publicly available datasets (Shao and Gool, 2003, Torralba,
2010, Teboul, 2010). The images were then resized to a com-
mon size of 256x256 pixels and sorted into appropriate classes.
Training and test sets are extracted randomly from the complete
dataset, by taking 354 images of each class for training and 50
for testing.

3.3 Results

Buildings None Part Street Facades
None 100 0 0 0
Part 2.8 85.6 2.4 9.2
Street 0.8 1.2 98 0
Facades 0 7.2 0.4 92.4

Table 1: Confusion matrix for the scene classification algorithm.
The value in i-th row and j-th column represents the percentage
the i-th class was labeled as j-th class.



The process of training and validation is repeated five times with
different splits in training and test sets, to eliminate possible bi-
ases in the choice of the training set. Results were then averaged,
and a confusion matrix was generated (See Table 1).

We can see that the most distinct classes are easily separated from
the others. Utilizing the vocabulary from (Oliva and Torralba,
2001), we can deduce that the images from the ’No building’
class usually have a high degree of naturalness, while the ’Street’
class, characterized by long vanishing lines, has a high degree of
expansion. The misclassification mostly occurs between classes
’Building part’ and ’Facades’. This behavior is expected, because
the scenes are visually quite similar.

4 IMAGE RECTIFICATION

Facade images are often taken in narrow streets. Sideways look-
ing cameras have a low chance of capturing most of a facade, as
opposed to cameras looking obliquely forward, upward or back-
ward. The images taken by these cameras are projectively dis-
torted. The prior rectification of the images to a fronto-parallel
view is a prerequisite to not only our facade splitting algorithm
but also further processing steps. In our implementation we fol-
lowed the approach from (Liebowitz and Zisserman, 1998). After
the scene classification from Section 3 we assume to look onto a
planar surface containing two dominant perpendicular directions,
which is a sensible assumption for man made scenes.

The relation between points of the image plane x and points in
the world plane x′ can be expressed by the projective transfor-
mation matrix H as x′ = Hx, where x and x′ are homogeneous
3-vectors. The rectification follows a step-wise process (see Fig-
ure 4) by estimating the parameters of the projective P, affine
A and similarity S part of the transformation H, which can be
(uniquely) decomposed into:

(a) (b) (c) (d)

Figure 2: Rectification process: (a) input image with dominant
lines, (b) projective distortion removal (c) affine distortion re-
moval (d) similarity transformation

H = SAP (1)

The projective transformation matrix has the form

P =

(
1 0 0
0 1 0
l1 l2 l3

)
, (2)

where l∞ = (l1, l2, l3)
T denotes the vanishing line of the plane.

Parallel lines in the world plane intersect in the distorted image
at vanishing points. All vanishing points lie on l∞. To find these
vanishing points we detect lines in the image using the publicly
available implementation of the state of the art line detector from

(Barinova et al., 2010). Then we use RANSAC to detect the two
vanishing points of the image (Fischler and Bolles, 1981).

The affine transformation:

A =

( 1
β
−α
β

0

0 1 0
0 0 1

)
(3)

has two degrees of freedom represented by the parameters α and
β. The knowledge of the perpendicular intersection of the dom-
inant lines la and lb is the only constraint we can impose, as we
have no further knowledge about other angles or length ratios
in the image. Therefore the affine part of the rectification pro-
cess can only restore angles but not length ratios. As shown in
(Liebowitz and Zisserman, 1998), α and β lie on the circle with
center

(cα, cβ) =
(
a+ b

2
, 0
)

and radius r = |(a− b)| (4)

where a = −la2/la1 and b = −lb2/lb1. If the image does
not contain any affine distortions, the parameters would have the
value (0, 1)T , so we choose the closest point on the circle to that
point for the correction.

Finally the image gets rotated by the rotation matrix R to align
the dominant lines with the axes, scaled by s and translated by t:

A =

(
sR t
0T 1

)
(5)

5 FACADE SPLITTING

Urban environments often consist of continuous building blocks
with little or no space between individual buildings. Addition-
ally, each building in the block may have a different architectural
style. Therefore, the style recognition system needs to be able to
separate different facades in order to properly classify them. As
man-made structures are usually characterized by strong horizon-
tal and vertical lines, we choose to exploit them as the main cue
for building separation. We assume that the individual facades
can be separated using vertical lines. The following heuristic,
similar to (Xiao et al., 2009) is used: horizontal line segments on
the building usually span only one facade. Vertical lines which
cross a large number of horizontal lines have less chance of being
a valid facade separator.

5.1 Line segment detection and grouping

After the rectification step, we know that the vertical lines in the
image correspond to the global direction of gravity. We use a line
segment detector (Grompone von Gioi et al., 2010) to find salient
edges. Then, line segments are grouped in three clusters. The
first cluster contains horizontal line segments (with a tolerance
of +/- 10 degrees in orientation). Similarly, the second contains
vertical line segments, while the third contains all other detected
line segments. The last cluster will typically have a smaller num-
ber of elements, due to the predominance of two perpendicular
orientations in urban scenery.

5.2 Vertical line sweeping

Next, we sweep a vertical line over the image. At each position
of the line, we calculate two values: support and penalty.



Support is defined as the number of vertical line segments that co-
incide with the sweeping line (or reside in its close vicinity). Ev-
ery vertical line segment is additionally weighted with its length:
longer vertical line segments provide more support for the line.
The support from neighboring vertical lines is reduced linearly
with the distance to the line.

Penalty is calculated through the number of horizontal lines that
the sweeping line crosses. Every horizontal line segment is weigh-
ted with its length: the longer the crossed segment is, the more
penalty it generates. Relative position of the crossing point to the
center of the horizontal line segment is also evaluated. Vertical
lines that cross horizontal segments near the edges will receive
less penalty than those who cut the segments through the middle.

After the line sweeping process we have two vectors of the same
size, equal to the image width: support vector and penalty vector.
We want to find the positions of the vertical line which corre-
spond to local minima in the penalty vector and local maxima
in the support vector. In order to calculate this, we first use the
penalty vector to threshold the support vector. All of the line posi-
tions which have more than 3% of the maximum penalty value are
discarded. Then, positions which have less then 20% of the maxi-
mum support value are eliminated as well. We set the appropriate
values in the support vector to zero. Finally, we perform local
non-maxima suppression on the support vector through the use
of a sliding window (9% of the image width). The resulting local
maxima then coincide with the desired separator positions. We
use these values to cut the building block into individual facades.
The process of estimating facade separators from line segments
is illustrated in Figure 3.

Figure 3: Facade splitting algorithm.

5.3 Results

We tested our facade splitting algorithm on a dataset consisting
of 178 facade images from Brussels. We achieved a detection
rate of 77%, with 29.4% false positive rate. The cases where
system failed to detect a boundary between facades were gener-
ally buildings which had strong horizontal features on the split-
ting lines. Highly protruding eaves from the neighboring roofs
and shops with awnings which span multiple facades are typical
examples. False positives generally appear on background build-
ings and non-planar facades.

6 STYLE CLASSIFICATION

The style classification is an important step in order to select
an appropriate grammar for the given building. To differenti-
ate between the different styles, namely ”Flemish renaissance“,
”Haussmann“, ”Neoclassical“ and ”Unknown“, we got convinc-
ing results using the Naive-Bayes Nearest-Neighbor (NBNN) clas-
sifier proposed by (Boiman et al., 2008). Despite its simplicity,
it has many advantages. This non-parametric classifier does not
need time consuming offline learning and it can handle a huge
amount of classes by design. This means that new styles can eas-
ily be added. Furthermore it avoids over-fitting, which is a serious
issue for learning-based approaches.

6.1 NBNN algorithm

The algorithm is summarized as follows (Boiman et al., 2008):

NBNN Algorithm:
1. Compute descriptors d1, . . . , dn of the query image Q.
2. ∀di∀C compute NN of di in C: NNC(di).
3. Ĉ = arg minC

∑n

i=1
||di−NNC(di)||2.

First we calculate all descriptors for our training images and sort
them into the different classes. Then, for every descriptor di of
the query image the nearest neighbor distances to each class is
approximated using the FLANN library (Muja and Lowe, 2009).
The sum over the Euclidean distances of each query descriptor
di denotes the image-to-class distance. The class with the least
distance is chosen as the winner class Ĉ.

6.2 Results

We cross-validated our style detector using SIFT (Lowe, 2004)
and SSIM (Shechtman and Irani, 2007) feature descriptors. Our
dataset contains 949 images: 318 background facades (i.e. fa-
cades belonging to none of the trained styles), 286 images for
Neoclassical, 180 for Haussmann and 165 for Flemish Renais-
sance. We have taken these images ourselves, except for the
Haussmannian style images that come from (Teboul, 2010). Ta-
ble 2 shows the confusion matrix after cross-validation for the
SIFT descriptor which was performing best throughout our ex-
periments. While the Haussmannian style is clearly separated
from other classes, many buildings of the Renaissance type are
classified as ”Unknown“. While we have the least number of im-
ages for the Renaissance style, our definition for the class is very
loose, resulting in a great diversity of the facades of that class.
The mean detection rate of the SIFT features was 84% while for

Style Haussman Neoclassical Renaissance Unknown
Haussman 0.98 0 0 0.02
Neoclassical 0.02 0.76 0 0.22
Renaissance 0 0 0.59 0.41
Unknown 0.03 0.005 0.005 0.96

Table 2: Confusion matrix for the style classification algorithm.
The value in i-th row and j-th column represents the percentage
the i-th class was labeled as j-th class.

the self similarity descriptor (SSIM) it reached only 78%. The
Figure 4 shows the regions of the sift interest points colored in
different colors. The colors indicate to which style the given fea-
ture had the minimum distance. The colors associated with the



styles clearly dominate the images. The features that respond
accordingly to the style are mostly attached to architectural ele-
ments that are typical for that style, e.g. the features responding
to the capitals in a neoclassical building.

(a) (b)

(c) (d)

Figure 4: Style detection: a) Neoclassical style (features in red),
b) Haussmannian style (features in blue), c) Renaissance style
(features in purple) and d) Unknown style (features in green)

7 CONCLUSION AND FUTURE WORK

We presented a system for automatic architectural style recogni-
tion. The output from our system can directly be used to initialize
an inverse procedural modeling reconstruction.

In case the system doesn’t recognize the style, the inverse proce-
dural modeling system can try several possibilities or use default
values. However, it comes with the cost of a more complicated
optimization problem.

Furthermore, knowing the style of a building implies we know
the kind of elements to look for during the reconstruction and
their typical appearances. Moreover, it will be able to select ac-
cordingly the corresponding typical 3D models (or even textures)
of the architectural elements to be used for rendering.

In our future work, we will use feedback from the procedural
modeling system to perform online learning. For example, if the
modeling is successful, the style database can be updated with the
current building. If not, we can select another style and retry the
reconstruction.
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